scholarly journals Market development for large scale SDH/SDC systems in country reports

Author(s):  
Magdalena Berberich

This publication of IEA SHC Task 55 describes the market development of Solar District Heating and Cooling in seven countries. Within country report presentations during the eight taskmeetings, the market developments in the participating countries were presented and discussed in the international expert group and the information is summarized in this factsheet.

2019 ◽  
Vol 9 (19) ◽  
pp. 4150 ◽  
Author(s):  
Pascal Lalanne ◽  
Paul Byrne

A fast-paced energy transition needs a higher penetration of renewables, of heating and cooling in the worldwide energy mix. With three novelties 1-of using shallow high-pressure LRC (Lined Rock Cavern) excavated close to storage needs, 2-of using a slow-moving CO2 piston applying steady pressure on the hydro part of UPHES (Underground Pumped Hydro Energy Storage) and 3-of relying on inexpensive thermal stores for long-duration storage, CO2 UPHES coupled with PTES (Pumped Thermal Electricity Storage) could become, at expected Capex cost of only 20 USD/kWh electrical, a game-changer by allowing the complete integration of intermittent renewable sources. Moreover, even though this early conceptual work requires validation by simulation and experimentation, CO2 UPHES as well as UPHES-PTES hybrid storage could also allow a low-cost and low-emission integration of intermittent renewables with future district heating and cooling networks.


2020 ◽  
Vol 140 (2) ◽  
pp. 94-103 ◽  
Author(s):  
Kohei Tomita ◽  
Yutaka Iino ◽  
Yasuhiro Hayashi ◽  
Yuto Yamamoto ◽  
Kosuke Kobayashi ◽  
...  

2018 ◽  
Vol 149 ◽  
pp. 585-594 ◽  
Author(s):  
Thomas Schmidt ◽  
Thomas Pauschinger ◽  
Per Alex Sørensen ◽  
Aart Snijders ◽  
Reda Djebbar ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 6035
Author(s):  
Robin Zeh ◽  
Björn Ohlsen ◽  
David Philipp ◽  
David Bertermann ◽  
Tim Kotz ◽  
...  

Low temperature district heating and cooling networks (5GDHC) in combination with very shallow geothermal energy potentials enable the complete renewable heating and cooling supply of settlements up to entire city districts. With the help of 5GDHC, heating and cooling can be distributed at a low temperature level with almost no distribution losses and made useable to consumers via decentralized heat pumps (HP). Numerous renewable heat sources, from wastewater heat exchangers and low-temperature industrial waste heat to borehole heat exchangers and large-scale geothermal collector systems (LSC), can be used for these networks. The use of large-scale geothermal collector systems also offers the opportunity to shift heating and cooling loads seasonally, contributing to flexibility in the heating network. In addition, the soil can be cooled below freezing point due to the strong regeneration caused by the solar irradiation. Multilayer geothermal collector systems can be used to deliberately generate excessive cooling of individual areas in order to provide cooling energy for residential buildings, office complexes or industrial applications. Planning these systems requires expertise and understanding regarding the interaction of these technologies in the overall system. This paper provides a summary of experience in planning 5GDHC with large-scale geothermal collector systems as well as other renewable heat sources.


2020 ◽  
Vol 24 (3) ◽  
pp. 470-482
Author(s):  
Henrik Pieper ◽  
Torben Ommen ◽  
Brian Elmegaard ◽  
Anna Volkova ◽  
Wiebke Brix Markussen

AbstractLarge-scale heat pumps (HPs) and refrigeration plants are essential technologies to decarbonise the heating and cooling sector. District heating and cooling (DHC) can be supplied with low carbon footprint, if power generated from renewable energy sources is used. The simultaneous supply of DHC is often not considered in energy planning, nor the characteristics of the heat source and sink. Simplified approaches may not reveal the true potential of HPs and chillers. In this paper, different heat sources and sinks and their characteristics were considered for the simultaneous supply of DHC based on large-scale HPs and refrigeration plants. An optimization model was developed based on mixed-integer linear programming. The model is able to identify ideal production and storage capacities, heat sources and sinks based on realistic hourly operation profiles. By doing so, it is possible to identify the most economical or sustainable supply of DHC using electricity. The optimization model was applied to the Nordhavn area, a new development district of Copenhagen, Denmark. The results show that a combination of different heat sources and sinks is ideal for the case study. A HP that uses the district cooling network as a heat source to supply DHC was shown to be very efficient and economical. Groundwater and sewage water HPs were proposed for an economical supply of district heating. The Pareto frontier showed that a large reduction in annual CO2 emissions is possible for a relatively small increase in investments.


2019 ◽  
Vol 49 ◽  
pp. 129-136 ◽  
Author(s):  
Stef Boesten ◽  
Wilfried Ivens ◽  
Stefan C. Dekker ◽  
Herman Eijdems

Abstract. In order to reduce greenhouse gas emissions and decrease dependency on depleting fossil fuel resources the shift to a renewable energy system is necessary. District heating and cooling systems are a viable solution to provide heat and cold in urban environments. Renewable heat and cold sources that may get incorporated in future urban energy systems will not provide the same high temperature output as current fossil fuel fired systems. Fifth generation district heating and cooling (5GDHC) systems are decentralized, bi-directional, close to ground temperature networks that use direct exchange of warm and cold return flows and thermal storage to balance thermal demand as much as possible. 5GDHC offers a way to incorporate low temperature renewable heat sources including shallow geothermal energy, as well as reduce total demand by recuperating generated heat from cooling and generated cold from heating. The large scale of 5GDHC allows for optimal design of technical parts like heat pumps and thermal storage vessels, while increasing overall system efficiency by incorporating a large variety of supply and demand profiles. We provide a definition for 5GDHC and show how this concept differs from conventional district heating systems. The Mijnwater system in Heerlen, the Netherlands is showing what a city-level 5GDHC system can look like.


Sign in / Sign up

Export Citation Format

Share Document