scholarly journals Large-Scale Pumped Thermal Electricity Storages—Converting Energy Using Shallow Lined Rock Caverns, Carbon Dioxide and Underground Pumped-Hydro

2019 ◽  
Vol 9 (19) ◽  
pp. 4150 ◽  
Author(s):  
Pascal Lalanne ◽  
Paul Byrne

A fast-paced energy transition needs a higher penetration of renewables, of heating and cooling in the worldwide energy mix. With three novelties 1-of using shallow high-pressure LRC (Lined Rock Cavern) excavated close to storage needs, 2-of using a slow-moving CO2 piston applying steady pressure on the hydro part of UPHES (Underground Pumped Hydro Energy Storage) and 3-of relying on inexpensive thermal stores for long-duration storage, CO2 UPHES coupled with PTES (Pumped Thermal Electricity Storage) could become, at expected Capex cost of only 20 USD/kWh electrical, a game-changer by allowing the complete integration of intermittent renewable sources. Moreover, even though this early conceptual work requires validation by simulation and experimentation, CO2 UPHES as well as UPHES-PTES hybrid storage could also allow a low-cost and low-emission integration of intermittent renewables with future district heating and cooling networks.

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4401
Author(s):  
Paul Byrne ◽  
Pascal Lalanne

The urgent energy transition needs a better penetration of renewable energy in the world’s energy mix. The intermittency of renewables requires the use of longer-term storage. The present system uses water displacement, in a lined rock cavern or in an aerial pressurised vessel, as the virtual piston of compressor and expander functions in a carbon dioxide heat pump cycle (HPC) and in an organic transcritical cycle (OTC). Within an impermeable membrane, carbon dioxide is compressed and expanded by filling and emptying pumped-hydro water. Carbon dioxide exchanges heat with two atmospheric thermal storage pits. The hot fluid and ice pits are charged by the HPC when renewable energy becomes available and discharged by the OTC when electricity is needed. A numerical model was built to replicate the system’s losses and to calculate its round-trip efficiency (RTE). A subsequent parametric study highlights key parameters for sizing and optimisation. With an expected RTE of around 70%, this CO2 PHES (pumped-hydro electricity storage) coupled with PTES (pumped thermal energy storage) could become a game-changer by allowing the efficient storage of intermittent renewable energy and by integrating with district heating and cooling networks, as required by cities and industry in the future.


2020 ◽  
Vol 140 (2) ◽  
pp. 94-103 ◽  
Author(s):  
Kohei Tomita ◽  
Yutaka Iino ◽  
Yasuhiro Hayashi ◽  
Yuto Yamamoto ◽  
Kosuke Kobayashi ◽  
...  

2018 ◽  
Vol 149 ◽  
pp. 585-594 ◽  
Author(s):  
Thomas Schmidt ◽  
Thomas Pauschinger ◽  
Per Alex Sørensen ◽  
Aart Snijders ◽  
Reda Djebbar ◽  
...  

2021 ◽  
Vol 14 (7) ◽  
Author(s):  
M. J. S. Zuberi ◽  
J. Chambers ◽  
M. K. Patel

AbstractThis study aims to provide detailed information on the key technologies that utilize renewables for decarbonization and electrification of the residential heating sector. To contextualize and compare the economics of the technologies, a levelized cost model is employed to perform a comparative analysis for a dense urban area in Switzerland. The outcome shows that decarbonization of the heat supply with a dominant share of renewables is feasible, but it is challenged by the high cost of some options. In the given context (current energy and CO2 prices, no coercive measures), the rapid shift from conventional boilers to electrification via decentralized heat pumps and/or the introduction of targeted small-scale thermal energy networks utilizing cheap local resources like industrial excess heat is the most viable option. The replacement of natural gas boilers with electrification technologies also is recommendable because it would result in a sixfold reduction in specific CO2 emissions. Wide-scale application of heat pumps may require significant electricity grid reinforcement which ultimately may escalate the costs. Large-scale district heating systems are currently relatively expensive due to the high network costs and require a sustainable financing mechanism. To speed up the energy transition, policy interventions by the government are urgently needed.


Author(s):  
Melinda Hale ◽  
David E. Hardt

Hot embossing is an effective technology for replicating micro-scale features in polymeric materials, but large-scale adoption of this method is hindered by high capital costs and longer cycle times relative to other technologies. This paper details a hot embossing machine design strategy motivated by maximum production speed with minimal capital cost. Innovative design aspects include the choice of new ceramic substrate heaters for electrical heating, design of a moveable heat sink to minimize heat load during the heating cycle, and the careful design of the thermal elements to minimize the heating and cooling cycle times. The hot embossing equipment fabricated from this design has a capital cost estimated to be an order of magnitude less than currently available options. The minimum cycle time is two minutes, and microstructures are replicated within a maximum area of 25mm by 75mm. The hot embossing machine has been tested to characterize the process variability. Runs of polymethylmethacrylate (PMMA) parts manufactured using this equipment are measured to have submicron variation under a variety of processing conditions.


1979 ◽  
Author(s):  
K. J. Waldron ◽  
Kambiz Kheyrandish ◽  
A. C. Meyers

The primary advantage of the central receiver concept is the minimization of heat transmission in the form of enthalpy of a working fluid. This is replaced by efficient and low cost optical energy transmission. This characteristic renders collectors using heliostats to reflect solar radiation onto a stationary receiver attractive for small to medium scale, as well as large scale collection. This paper describes several years of design studies and simulations of central receiver systems scaled to be suitable for heating and cooling of commercial buildings or for some industrial process heat applications. The relatively small distances between the heliostats and receiver, vertical flat plate receiver geometry, and relatively low receiver result in optical simulation characteristics of such systems quite different to those of the large solar tower systems. The variation in radiation intensity over the surface of the receiver due to the relatively irregular shape of the insolated patch from a heliostat segment, and due to dispersion produced by off axis aberration in segmented heliostats, requires several unique features in the receiver design.


2021 ◽  
Vol 13 (11) ◽  
pp. 6035
Author(s):  
Robin Zeh ◽  
Björn Ohlsen ◽  
David Philipp ◽  
David Bertermann ◽  
Tim Kotz ◽  
...  

Low temperature district heating and cooling networks (5GDHC) in combination with very shallow geothermal energy potentials enable the complete renewable heating and cooling supply of settlements up to entire city districts. With the help of 5GDHC, heating and cooling can be distributed at a low temperature level with almost no distribution losses and made useable to consumers via decentralized heat pumps (HP). Numerous renewable heat sources, from wastewater heat exchangers and low-temperature industrial waste heat to borehole heat exchangers and large-scale geothermal collector systems (LSC), can be used for these networks. The use of large-scale geothermal collector systems also offers the opportunity to shift heating and cooling loads seasonally, contributing to flexibility in the heating network. In addition, the soil can be cooled below freezing point due to the strong regeneration caused by the solar irradiation. Multilayer geothermal collector systems can be used to deliberately generate excessive cooling of individual areas in order to provide cooling energy for residential buildings, office complexes or industrial applications. Planning these systems requires expertise and understanding regarding the interaction of these technologies in the overall system. This paper provides a summary of experience in planning 5GDHC with large-scale geothermal collector systems as well as other renewable heat sources.


2021 ◽  
Vol 2 (3) ◽  
pp. 49-56
Author(s):  
John Vourdoubas

Clean energy transition in islands is important and urgent in the current era of climate change. The possibility of de-carbonizing the heating and cooling sector in the island of Crete, Greece has been investigated. Fossil fuels are used in Crete in electricity generation, in heat and cooling production as well as in transportation. The use of various renewable and non-renewable fuels as well as the technologies used in heat and cooling generation has been examined together with the annual changes in fossil fuels consumption during the last years. Various renewable energies like solar energy, biomass and low enthalpy geothermal energy combined with renewable electricity could cover all the heating and cooling requirements in Crete totally eliminating the use of fossil fuels. Their technologies are mature, reliable, and cost efficient.  Renewable and low cost electricity can be easily generated by the abundant solar and wind energy resources in Crete powering electric systems generating heat and cooling. Current work indicates that the heating and cooling sector in Crete can be de-carbonized. This would result in the mitigation of climate change complying with the European goal for carbon neutrality in Europe by 2050.


2020 ◽  
Vol 24 (3) ◽  
pp. 470-482
Author(s):  
Henrik Pieper ◽  
Torben Ommen ◽  
Brian Elmegaard ◽  
Anna Volkova ◽  
Wiebke Brix Markussen

AbstractLarge-scale heat pumps (HPs) and refrigeration plants are essential technologies to decarbonise the heating and cooling sector. District heating and cooling (DHC) can be supplied with low carbon footprint, if power generated from renewable energy sources is used. The simultaneous supply of DHC is often not considered in energy planning, nor the characteristics of the heat source and sink. Simplified approaches may not reveal the true potential of HPs and chillers. In this paper, different heat sources and sinks and their characteristics were considered for the simultaneous supply of DHC based on large-scale HPs and refrigeration plants. An optimization model was developed based on mixed-integer linear programming. The model is able to identify ideal production and storage capacities, heat sources and sinks based on realistic hourly operation profiles. By doing so, it is possible to identify the most economical or sustainable supply of DHC using electricity. The optimization model was applied to the Nordhavn area, a new development district of Copenhagen, Denmark. The results show that a combination of different heat sources and sinks is ideal for the case study. A HP that uses the district cooling network as a heat source to supply DHC was shown to be very efficient and economical. Groundwater and sewage water HPs were proposed for an economical supply of district heating. The Pareto frontier showed that a large reduction in annual CO2 emissions is possible for a relatively small increase in investments.


Author(s):  
Magdalena Berberich

This publication of IEA SHC Task 55 describes the market development of Solar District Heating and Cooling in seven countries. Within country report presentations during the eight taskmeetings, the market developments in the participating countries were presented and discussed in the international expert group and the information is summarized in this factsheet.


Sign in / Sign up

Export Citation Format

Share Document