In vitro evaluation of Trichoderma viride and Trichoderma harzianum against Fusarium wilt of Chickpea

2017 ◽  
Vol 5 (5) ◽  
pp. 460-464 ◽  
Author(s):  
S. P. Patole ◽  
Plant Disease ◽  
2016 ◽  
Vol 100 (9) ◽  
pp. 1910-1920 ◽  
Author(s):  
J. Himmelstein ◽  
J. E. Maul ◽  
Y. Balci ◽  
K. L. Everts

Fall-planted Vicia villosa or Trifolium incarnatum cover crops, incorporated in spring as a green manure, can suppress Fusarium wilt (Fusarium oxysporum f. sp. niveum) of watermelon. During cover crop growth, termination, and incorporation into the soil, many factors such as arbuscular mycorrhizae colonization, leachate, and soil respiration differ. How these cover-crop-associated factors affect Fusarium wilt suppression is not fully understood. Experiments were conducted to evaluate how leachate, soil respiration, and other green-manure-associated changes affected Fusarium wilt suppression, and to evaluate the efficacy of the biocontrol product Actinovate AG (Streptomyces lydicus WYEC 108). General and specific suppression was examined in the field by assessing the effects of cover crop green manures (V. villosa, T. incarnatum, Secale cereale, and Brassica juncea) on soil respiration, presence of F. oxysporum spp., and arbuscular mycorrhizal colonization of watermelon. Cover crop treatments V. villosa, T. incarnatum, and S. cereale and no cover crop were evaluated both alone and in combination with Actinovate AG in the greenhouse. Additionally, in vitro experiments were conducted to measure the effects of cover crop leachate on the mycelial growth rates of F. oxysporum f. sp. niveum race 1 and Trichoderma harzianum. Soil microbial respiration was significantly elevated in V. villosa and Trifolium incarnatum treatments both preceding and following green manure incorporation, and was significantly negatively correlated with Fusarium wilt, suggesting that microbial activity was higher under the legumes, indicative of general suppression. Parallel to this, in vitro growth rates of F. oxysporum f. sp. niveum and Trichoderma harzianum on V. villosa leachate amended media were 66 and 213% greater, respectively, than on nonamended plates. The F. oxysporum spp. population (based on CFU and not differentiated into formae specialis or races) significantly increased in V. villosa-amended field plots. Additionally, the percentage of watermelon roots colonized by arbuscular mycorrhizae following V. villosa and Trifolium incarnatum green manures was significantly higher than in watermelon following bare ground (58 and 44% higher, respectively). In greenhouse trials where cover crops were amended to soil, Actinovate AG did not consistently reduce Fusarium wilt. Both general and specific disease suppression play a role in reducing Fusarium wilt on watermelon.


2017 ◽  
Vol 14 (3) ◽  
pp. 1169-1176
Author(s):  
P. Rajeswari ◽  
Rupam Kapoor

ABSTRACT: Fusarium oxysporum causes Fusarium wilt of crop plants leads to considerable yield loss. The study was conducted to determine the beneficial effects of combining Trichoderma species and Pseudomonas fluorescens i.e Trichodema viride+ Pseudomonas fluorescens (Tv+Pf) (1+2%), Trichoderma harzianum+Pseudomonas fluorescens (Th+Pf) (1.5+2%), Trichoderma viride +Trichoderma harzianum (Tv+Th) (1+1.5%) on the activity of cellulolytic enzymes of Fusarium oxysporum to control Fusarium wilt of Arachis hypogaea. L wilt in vitro. The activity of 1,4 -β – Endoglucanase, 1,4 -β – Exoglucanase, Cellobiases produced by Fusarium oxysporum (Control) was higher. Maximum inhibition of Cellulolytic enzymes was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf) (1+2%), followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf) (1.5+2%) and Trichoderma viride + Trichoderma harzianum (Tv+Th) (1+1.5%). However, disease suppression of Fusarium wilt of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2%) was considerably better as compared to other two strains. At the same time the other two combinations resulted in enhanced disease suppression as compared to single strains. This indicates that the potential benefits of using combination treatments to suppress Fusarium wilt. The study suggests the significance of interactive effects of Trichoderma and Pseudomonas in biocontrol of wilt disease.


2017 ◽  
Vol 9 (4) ◽  
pp. 2327-2331 ◽  
Author(s):  
Balkishan Chaudhary ◽  
Sanjeev Kumar ◽  
Shiva Kant Kushwaha

Three biocontrol agent viz., Trichoderma viride, Trichoderma virens and Trichoderma harzianum were evaluated to test the antagonism against Fusarium udum under in vitro conditions. All the three biocontrol agents have the potential of parasitizing the growth of Fusarium udum in vitro. The rate of parasitism was found fastest in T. viride (61.12% over growth in 96 hrs) than T. virens and T. harzianum. The volatile compounds from Trichoderma viride suppressed the mycelial growth of Fusarium udum by 43.13% and found effective when compared to Tricho-derma virens and Trichoderma harzianum. Non-volatile compounds or culture filtrate from Trichoderma virens at 15% concentration shows complete mycelial inhibition of the test fungi. The antagonist T. virens was chosen to be the most promising bio-control agent for F. udum.


2021 ◽  
Vol 50 (2) ◽  
pp. 423-425
Author(s):  
Ramesh Kumar ◽  
Sanjeev Kumar ◽  
Balkishan Chaudhary

Six biocontrol treatments viz., Trichoderma viride, Trichoderma virens, Trichoderma harzianum, T. harzianum + T. viride, T. harzianum + T. virens and T. viride + T. virens were evaluated to test the antagonism against Fusarium verticillioides under in vitro conditions. The maximum growth inhibition (90.6%) was recorded in consortium of T. harzianum + T. viride in dual culture technique . The volatile and non volatile compounds from the consortium of T. harzianum + T. viride also found best and suppressed the mycelial growth of F. verticillioides to the tune of 83.90 and 84.61 %, respectively. Bangladesh J. Bot. 50(2): 423-425, 2021 (June)


Author(s):  
P Rajeswari ◽  
R Kapoor

Fusarium oxysporum, the soil borne pathogen causes vascular wilt, on majority of crop plants. It has been demonstrated that two different species of Trichoderma and Pseudomonas fluorescens suppress disease by different mechanisms. Therefore, application of a mixture of these biocontrol agents, and thus of several suppressive mechanisms, may represent a viable control strategy. A necessity for biocontrol by combinations of biocontrol agents can be the compatibility of the co-inoculated micro-organisms. Hence, compatibility between Trichoderma spp. and Pseudomonas fluorescens that have the ability to suppress Fusarium oxysporum in vitro on the activity of pectinolytic enzymes of Fusarium oxysporum. The activity of pectinolytic enzymes, i.e. pectin methyl esterase, endo and exo polymethylgalacturonases and exo and endo pectin trans eliminases produced by Fusarium oxysporum (Control) was higher. Maximum inhibition of pectin methylesterase, exo and endo polymethylgalacturonase and exo and endopectin trans eliminase was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf) (1+2%), followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf) (1.5+2%) and Trichoderma viride + Trichoderma harzianum (Tv+Th) (1+1.5%). However, pathogenecity suppression of Fusarium oxysporum, a causative of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2%) was significantly better as compared to the single bio-agent. This indicates that specific interactions between biocontrol agents influence suppression of pathogenicity factors directly by combinations of these compatible bio-agents.Int. J. Agril. Res. Innov. & Tech. 7 (2): 36-42, December, 2017


2021 ◽  
Vol 33 (3) ◽  
pp. 101363 ◽  
Author(s):  
Mohamed Taha Yassin ◽  
Ashraf Abdel-Fattah Mostafa ◽  
Abdulaziz A. Al-Askar ◽  
Shaban R.M. Sayed ◽  
Ahmed Mostafa Rady

Sign in / Sign up

Export Citation Format

Share Document