scholarly journals Factors Associated with Leguminous Green Manure Incorporation and Fusarium Wilt Suppression in Watermelon

Plant Disease ◽  
2016 ◽  
Vol 100 (9) ◽  
pp. 1910-1920 ◽  
Author(s):  
J. Himmelstein ◽  
J. E. Maul ◽  
Y. Balci ◽  
K. L. Everts

Fall-planted Vicia villosa or Trifolium incarnatum cover crops, incorporated in spring as a green manure, can suppress Fusarium wilt (Fusarium oxysporum f. sp. niveum) of watermelon. During cover crop growth, termination, and incorporation into the soil, many factors such as arbuscular mycorrhizae colonization, leachate, and soil respiration differ. How these cover-crop-associated factors affect Fusarium wilt suppression is not fully understood. Experiments were conducted to evaluate how leachate, soil respiration, and other green-manure-associated changes affected Fusarium wilt suppression, and to evaluate the efficacy of the biocontrol product Actinovate AG (Streptomyces lydicus WYEC 108). General and specific suppression was examined in the field by assessing the effects of cover crop green manures (V. villosa, T. incarnatum, Secale cereale, and Brassica juncea) on soil respiration, presence of F. oxysporum spp., and arbuscular mycorrhizal colonization of watermelon. Cover crop treatments V. villosa, T. incarnatum, and S. cereale and no cover crop were evaluated both alone and in combination with Actinovate AG in the greenhouse. Additionally, in vitro experiments were conducted to measure the effects of cover crop leachate on the mycelial growth rates of F. oxysporum f. sp. niveum race 1 and Trichoderma harzianum. Soil microbial respiration was significantly elevated in V. villosa and Trifolium incarnatum treatments both preceding and following green manure incorporation, and was significantly negatively correlated with Fusarium wilt, suggesting that microbial activity was higher under the legumes, indicative of general suppression. Parallel to this, in vitro growth rates of F. oxysporum f. sp. niveum and Trichoderma harzianum on V. villosa leachate amended media were 66 and 213% greater, respectively, than on nonamended plates. The F. oxysporum spp. population (based on CFU and not differentiated into formae specialis or races) significantly increased in V. villosa-amended field plots. Additionally, the percentage of watermelon roots colonized by arbuscular mycorrhizae following V. villosa and Trifolium incarnatum green manures was significantly higher than in watermelon following bare ground (58 and 44% higher, respectively). In greenhouse trials where cover crops were amended to soil, Actinovate AG did not consistently reduce Fusarium wilt. Both general and specific disease suppression play a role in reducing Fusarium wilt on watermelon.

Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 965-972 ◽  
Author(s):  
J. C. Himmelstein ◽  
J. E. Maul ◽  
K. L. Everts

Triploid watermelon cultivars are grown on more than 2,023 ha in Maryland and in Delaware. Triploid watermelon cultivars have little host resistance to Fusarium wilt of watermelon (Fusarium oxysporum f. sp. niveum). The effects of four different fall-planted cover crops (Vicia villosa, Trifolium incarnatum, Secale cereale, and Brassica juncea) that were tilled in the spring as green manures, and bare ground, were evaluated alone and in combination with the biocontrol product Actinovate (Streptomyces lydicus) on Fusarium wilt severity and watermelon fruit yield and quality. Six field experiments were conducted over 3 years in Beltsville and Salisbury, MD and Georgetown, DE. Both V. villosa and T. incarnatum significantly suppressed Fusarium wilt of watermelon as much as 21% compared with watermelon in nonamended plots. However, no suppression of Fusarium wilt occurred at low disease levels or where low cover crop biomass was present. In general, Beltsville, MD had lower disease levels than Salisbury, MD and Georgetown, DE. T. incarnatum was the only cover crop that yielded significantly more fruit than nonamended treatments (129% more fruit per hectare) but only for one field trial. The Actinovate product either did not reduce Fusarium wilt or the magnitude of the reduction was nominal. Actinovate significantly reduced Fusarium wilt by 2% in 2009 and as much as 7% in 2010, and increased Fusarium wilt severity by 2.5% in 2011. Actinovate significantly increased yield for one field trial but only when applied to nonamended or Secale cereal-amended plots. This is the first report of a reduction in Fusarium wilt following a T. incarnatum cover crop incorporated as a green manure.


Author(s):  
Robert P. Larkin

Crop rotations and the inclusion of cover crops and green manures are primary tools in the sustainable management of soil-borne diseases in crop production systems. Crop rotations can reduce soil-borne disease through three general mechanisms: (1) serving as a break in the host-pathogen cycle; (2) by altering the soil physical, chemical, or biological characteristics to stimulate microbial activity and diversity; or (3) directly inhibiting pathogens through the release of suppressive or toxic compounds or the enhancement of specific antagonists. Brassicas, sudangrass, and related plant types are disease-suppressive crops well-known for their biofumigation potential but also have other effects on soil microbiology that are important in disease suppression. The efficacy of rotations for reducing soil-borne diseases is dependent on several factors, including crop type, rotation length, rotation sequence, and use of the crop (as full-season rotation, cover crop, or green manure). Years of field research with Brassica and non-Brassica rotation crops in potato cropping systems in Maine have documented the efficacy of Brassica green manures for the reduction of multiple soil-borne diseases. However, they have also indicated that these crops can provide disease control even when not incorporated as green manures and that other non-biofumigant crops (such as barley, ryegrass, and buckwheat) can also be effective in disease suppression. In general, all crops provided better disease control when used as green manure vs. as a cover crop, but the addition of a cover crop can improve control provided by most rotation crops. In long-term cropping system trials, rotations incorporating multiple soil health management practices, such as longer rotations, disease-suppressive rotation crops, cover crops, and green manures, and/or organic amendments have resulted in greater yield and microbial activity and fewer disease problems than standard rotations. These results indicate that improved cropping systems may enhance productivity, sustainability, and economic viability.


2020 ◽  
Author(s):  
Xin Shu ◽  
Yiran Zou ◽  
Liz Shaw ◽  
Lindsay Todman ◽  
Mark Tibbett ◽  
...  

<p>Cover crops are a contemporary tool to sustainably manage agricultural soils by boosting fertility, suppressing weeds and disease, and benefiting cash crop yields, thus securing future food supply. Due to the different chemical composition of crop residues from different plant families, we hypothesised that a mixture of cover crop residues may have a greater potential to improve soil health than the sum of the parts. Our experiment focused on the impact of four cover crops (clover, sunflower, radish and buckwheat) and their quaternary mixture on soil respiration and the soil microbial community in an 84-day microcosm experiment. On average adding cover crop residues significantly (P < 0.001) increased soil respiration from 29 to 343 µg C g<sup>-1</sup> h<sup>-1</sup> and microbial biomass from 18 to 60 µg C g<sup>-1</sup>, compared to the unamended control during 84 days’ incubation. Cover crop addition resulted in a significant (P < 0.001) alteration of the soil microbial community structure compared to that of the control. The quaternary mixture of cover crop residues significantly (P = 0.011) increased soil respiration rate by 23.79 µg C g<sup>-1</sup> h<sup>-1</sup> during the period 30 to 84 days after residue incorporation, compared to the average of the four individual residues. However, no significant difference in the size of the microbial biomass was found between the mixture and the average of the four individuals, indicating the mixture may invest resources which transit dormant microbial species into a metabolically active state and thus boost microbial respiration. Analysis of similarity of microbial community composition (ANOSIM) demonstrated the mixture significantly (P = 0.001) shifted microbial community structure away from buckwheat (R = 0.847), clover (R = 0.688), radish (R = 0.285) and sunflower (R = 0.785), respectively. This implies cover crop residues provide a niche specialization and differentiation on a selection of microbial communities that favour certain plant compounds. While applying cover crop residues has positive impacts on soil function, we found that applying a mixture of cover crop residues may provide greater potential to select for microorganisms or activate dormant microbial species which result in higher soil function. The outcome of this study will help seed suppliers to design, and farmers to select, novel cover crop mixtures which enhance soil function synergistically, leading to a greater potential to sustainably improve soil health.</p>


Nematology ◽  
2011 ◽  
Vol 13 (8) ◽  
pp. 965-975 ◽  
Author(s):  
Yirina Valdes ◽  
Roland N. Perry ◽  
Nicole Viaene ◽  
Maurice Moens

AbstractThe potato cyst nematode, Globodera rostochiensis, is a quarantine organism. Environmentally benign control measures for this economically important pest are needed. Green manures, in particular plants from the Brassicaceae, suppress some plant-parasitic nematodes and have potential as control agents. This study examined if growing and incorporating cover crops from the Brassicaceae family influenced hatching of G. rostochiensis. The effect of root diffusates and plant extracts, as well as soil incorporation of plant material from three commonly used species of green manures, was studied in in vitro bioassays and pot tests. The results showed that brassica diffusates and plant extracts were not nematicidal. In addition, although they did not cause hatch by themselves, pretreatment with these solutions enhanced subsequent hatch in host root diffusates. The results are discussed in the context of the hatching response of G. rostochiensis and the likely influence on field usage of these green manures.


Plant Disease ◽  
1998 ◽  
Vol 82 (8) ◽  
pp. 945-952 ◽  
Author(s):  
Nicole M. Viaene ◽  
George S. Abawi

Host suitability for Meloidogyne hapla of six cover crops was tested in the greenhouse. Sudan-grass cv. Trudan 8 and rye (mixture of cultivars) were nonhosts; oat cv. Porter was a poor host; and phacelia cv. Angelia, oilseed radish cv. Renova, and yellow mustard cv. Martigena were maintenance hosts. When incorporated as a green manure before planting of lettuce cv. Mon-tello, sudangrass was the most effective of the cover crops in reducing egg production of M. hapla. Soil amendment with all parts of sudangrass resulted in lower reproduction of M. hapla on lettuce than soil amendment with only roots of sudangrass. Soil incorporation of 2-month-old (or younger) tissues of sudangrass was more effective in reducing nematode reproduction on subsequent lettuce plants than incorporation of 3-month-old tissues. Sudangrass was grown as a cover crop after lettuce for three growing seasons in field microplots and incorporated as a green manure before the first fall frost. Weight of lettuce heads was significantly higher and reproduction of M. hapla was significantly lower in sudangrass-amended microplots compared with those left fallow between lettuce crops, but results varied with year and nematode infestation level.


2016 ◽  
Vol 82 (6) ◽  
pp. 1767-1777 ◽  
Author(s):  
Neiunna L. Reed-Jones ◽  
Sasha Cahn Marine ◽  
Kathryne L. Everts ◽  
Shirley A. Micallef

ABSTRACTCover crops provide several ecosystem services, but their impact on enteric bacterial survival remains unexplored. The influence of cover cropping on foodborne pathogen indicator bacteria was assessed in five cover crop/green manure systems: cereal rye, hairy vetch, crimson clover, hairy vetch-rye and crimson clover-rye mixtures, and bare ground. Cover crop plots were inoculated withEscherichia coliandListeria innocuain the fall of 2013 and 2014 and tilled into the soil in the spring to form green manure. Soil samples were collected and the bacteria enumerated. Time was a factor for all bacterial populations studied in all fields (P< 0.001).E. colilevels declined when soil temperatures dipped to <5°C and were detected only sporadically the following spring.L. innocuadiminished somewhat but persisted, independently of season. In an organic field, the cover crop was a factor forE. coliin year 1 (P= 0.004) and forL. innocuain year 2 (P= 0.011). In year 1,E. colilevels were highest in the rye and hairy vetch-rye plots. In year 2,L. innocualevels were higher in hairy vetch-rye (P= 0.01) and hairy vetch (P= 0.03) plots than in the rye plot. Bacterial populations grew (P< 0.05) or remained the same 4 weeks after green manure incorporation, although initial reductions inL. innocuanumbers were observed after tilling (P< 0.05). Green manure type was a factor only forL. innocuaabundance in a transitional field (P< 0.05). Overall, the impacts of cover crops/green manures on bacterial population dynamics in soil varied, being influenced by bacterial species, time from inoculation, soil temperature, rainfall, and tillage; this reveals the need for long-term studies.


2019 ◽  
Vol 11 (9) ◽  
pp. 73
Author(s):  
João Nacir Colombo ◽  
Mário Puiatti ◽  
Marcelo Rodrigo Krause ◽  
Marília Cecília Bittencourt ◽  
Janiele Cássia Barbosa Vieira ◽  
...  

Although several studies about intercropping green manures with vegetable crops have already been carried out, there are few studies in which the economic analysis was performed. The aim of the present study was to evaluate the economic profitability of the taro and Crotalaria juncea consortium, as well as broccoli, green maize and snow pea grown in succession. The treatments correspond to 10 different cutting dates of the sunn hemp during its intercropping with taro (55, 70, 85, 100, 115, 130, 145, 160, 190 and 220 DAS-days after sowing), plus the monoculture of the taro. Under the legumious cover crop straw were grown in succession: broccoli, green maize and snow pea. The use of Crotalaria juncea in a consortium does not affect the productivity and economic profitability of the taro when cutting up to 130 DAS. The residual effect of Crotalaria juncea grown in consortium with taro increases the economic yield of broccoli when the cutting is performed from 145 DAS. However, it does not affect green maize and snow pea. When the taro is cultivated intercropped with Crotalaria juncea and in succession broccoli, green maize and snow pea are grown, higher yields and economic incomes are obtained by cutting the leguminous green manure up to 130 DAS.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 570c-570
Author(s):  
Owusu A. Bandele ◽  
Marion Javius ◽  
Byron Belvitt ◽  
Oscar Udoh

Fall-planted cover crops of hairy vetch (Vicia villosa Roth), Austrian winter pea (Pisum sativum subsp. arvense L. Poir), and crimson clover (Trifolium incarnatum L.) were each followed by spring-planted 'Sundance' summer squash [Cucurbita pepo var. melopepo (L.) Alef.] and 'Dasher' cucumber (Cucumis sativus L.). Squash and cucumber crops were followed by fall 'Florida Broadleaf mustard green [Brassica juncea (L.) Czerniak] and 'Vates' collard (Brassica oleracea L. Acephala group), respectively. The same vegetable sequences were also planted without benefit of cover crop. Three nitrogen (N) rates were applied to each vegetable crop. Squash following winter pea and crimson clover produced greater yields than did squash planted without preceding cover crop. Cucumber following crimson clover produced the greatest yields. No cover crop effect was noted with mustard or collard. Elimination of N fertilizer resulted in reduced yields for all crops, but yields of crops with one-half the recommended N applied were generally comparable to those receiving the full recommended rate.


EDIS ◽  
1969 ◽  
Vol 2003 (16) ◽  
Author(s):  
Jim Rich ◽  
David Wright ◽  
Jim Marois ◽  
Dick Sprenkel

Cover crops are generally planted after a primary (cash) crop for one or more of the following reasons: erosion control, organic matter accumulation, improved soil tilth, pest suppression (weed, disease, nematode, and insect), and nitrogen production. Optimally, a cover crop will provide a wide range of most or all of the previously mentioned benefits, even if the main reason for planting it was more specific. The eight cover/green manure crops described herein have been shown to provide several benefits to a succeeding crop. This document is ENY-688 (IN483), one of a series of the Department of Entomology and Nematology, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Publication Date: August 2003.


Sign in / Sign up

Export Citation Format

Share Document