scholarly journals The Application of CRISPR/Cas9 Technology for Farm Animals: A Review

2021 ◽  
Author(s):  
Vinay Kumar Mehra ◽  
Satish Kumar

Livestock animal are important for agriculture economy and biomedical research. They are sources of Milk, meat, carcass, organic manure and other products. The development of genome editing technologies, especially CRISPR-Cas have revolutionized the generation of gene edited farm animals. In this review, we briefly introduce the CRISPR-Cas9 technology and highlight its application on livestock such as human disease modeling, disease resistant animal, and generation of hornless cattle, animal welfare and other agricultural and biomedical related traits which enhance the livestock production in order to meet the increasing demand of food worldwide. The ability to transfer sperm-producing stem cells or spermatogonial stem cells (SSCs) from a donor animal into the testes of a recipient male could have multiple applications. Production of BLG free milk in cattle provides a promising way to those who have allergy to cow milk. The knockdown of myostatin gene in different species like Sheep, Goat, Cattle and pig is very helpful in the economy of meat industry. Besides the several benefits of CRISPR-Cas9 technology, the risk factors and ethics issues related to this technology should be reconsidered before they enter into CRISPR era.

Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 966
Author(s):  
Xv Zhang ◽  
Liling Tang ◽  
Qian Yi

The vasculature of stem-cell-derived liver organoids can be engineered using methods that recapitulate embryonic liver development. Hepatic organoids with a vascular network offer great application prospects for drug screening, disease modeling, and therapeutics. However, the application of stem cell-derived organoids is hindered by insufficient vascularization and maturation. Here, we review different theories about the origin of hepatic cells and the morphogenesis of hepatic vessels to provide potential approaches for organoid generation. We also review the main protocols for generating vascularized liver organoids from stem cells and consider their potential and limitations in the generation of vascularized liver organoids.


2016 ◽  
Vol 17 (2) ◽  
pp. 256 ◽  
Author(s):  
Mohammed Kawser Hossain ◽  
Ahmed Abdal Dayem ◽  
Jihae Han ◽  
Subbroto Kumar Saha ◽  
Gwang-Mo Yang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bei Liu ◽  
Shi Chen ◽  
Yaxing Xu ◽  
Yulin Lyu ◽  
Jinlin Wang ◽  
...  

AbstractExtended pluripotent stem (EPS) cells have shown great applicative potentials in generating synthetic embryos, directed differentiation and disease modeling. However, the lack of a xeno-free culture condition has significantly limited their applications. Here, we report a chemically defined and xeno-free culture system for culturing and deriving human EPS cells in vitro. Xeno-free human EPS cells can be long-term and genetically stably maintained in vitro, as well as preserve their embryonic and extraembryonic developmental potentials. Furthermore, the xeno-free culturing system also permits efficient derivation of human EPS cells from human fibroblast through reprogramming. Our study could have broad utility in future applications of human EPS cells in biomedicine.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Thekkeparambil Chandrabose Srijaya ◽  
Padmaja Jayaprasad Pradeep ◽  
Rosnah Binti Zain ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim ◽  
...  

Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research. Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC linesin vitrofrom patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations, pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.


2018 ◽  
Vol 6 (12) ◽  
pp. 707-717
Author(s):  
Massimo Conese ◽  
Elisa Beccia ◽  
Annalucia Carbone ◽  
Stefano Castellani ◽  
Sante Di Gioia ◽  
...  

2011 ◽  
Vol 2 (2) ◽  
Author(s):  
Nina Kosi ◽  
Dinko Mitrečić

AbstractNeurological diseases are recognized as one of the most significant burdens of the modern society. Therefore, a new therapeutic approach applicable to nervous system represents priority of today’s medicine. A rapid development of stem cell technology in the last two decades introduced a possibility to regenerate disease-affected nervous tissue. In this vein, stem cells are envisioned as a replacement for lost neurons, a source of trophic support, a therapeutic vehicle, and as a tool for in vitro modeling. This article reviews the current concepts in stem cell-based therapy of neurological diseases and comments ongoing efforts aiming at clinical translation.


2019 ◽  
Vol 20 (22) ◽  
pp. 5752 ◽  
Author(s):  
Heng Liang Tan ◽  
Andre Choo

Pluripotent stem cells (PSCs) comprise both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). The application of pluripotent stem cells is divided into four main areas, namely: (i) regenerative therapy, (ii) the study and understanding of developmental biology, (iii) drug screening and toxicology and (iv) disease modeling. In this review, we describe a new opportunity for PSCs, the discovery of new biomarkers and generating antibodies against these biomarkers. PSCs are good sources of immunogen for raising monoclonal antibodies (mAbs) because of the conservation of oncofetal antigens between PSCs and cancer cells. Hence mAbs generated using PSCs can potentially be applied in two different fields. First, these mAbs can be used in regenerative cell therapy to characterize the PSCs. In addition, the mAbs can be used to separate or eliminate contaminating or residual undifferentiated PSCs from the differentiated cell product. This step is critical as undifferentiated PSCs can form teratomas in vivo. The mAbs generated against PSCs can also be used in the field of oncology. Here, novel targets can be identified and the mAbs developed as targeted therapy to kill the cancer cells. Conversely, as new and novel oncofetal biomarkers are discovered on PSCs, cancer mAbs that are already approved by the FDA can be repurposed for regenerative medicine, thus expediting the route to the clinics.


Stem Cells ◽  
2020 ◽  
pp. 343-367
Author(s):  
Mary L. Clarke ◽  
Jonathan Frampton

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1643
Author(s):  
Yohei Hayashi ◽  
Evgeniia Borisova

In this Special Issue of Biomedicines on disease-focused research using stem cells, we cover the latest conceptual and practical advances in stem cell-based therapies and disease modeling [...]


Sign in / Sign up

Export Citation Format

Share Document