Leptin Supplementation Stimulates Synergism with Growth Factors and Hormones to Express Its Receptor in Cultured Preantral Follicles of Sheep

Author(s):  
K. Sravani Pragna ◽  
V. Praveen Chakravarthi ◽  
Deepa Pathipati ◽  
B. Rambabu Naik ◽  
L.S.S. Varaprasad Reddy ◽  
...  

Background: Leptin receptor is a transmembrane receptor that regulates reproduction at molecular level.Since for action of any hormone on target cell and to have local action on any tissue, expression of its own receptor is necessary and also it is not known whether such improvement in ovarian follicular development by Leptin is mediated through presence of its homologous receptors in the sheep ovaries. Therefore this study aimed on expression of Leptin receptor mRNA in cultured ovarian follicles of sheep by RT PCR.Methods: Leptin receptor mRNA expression in sheep was studied using qRT-PCR from: (i) In vivo grown preantral, early antral, antral, large antral follicles and cumulus oocyte complexes obtained from large antral follicles subjected to 24h of in vitro maturation and (ii) PFs’ exposed to three different culture media for 3min, two, four or six days and subsequently matured in vitro for 24h. Result: Leptin receptor was observed at all stages ovarian follicles in both cumulus cells and oocytes. Leptin supplementation along with other growth factors and hormones stimulated the expression of its receptor mRNA which is parallel to in vivo stages which could suggest synergistic action of growth factors and hormones with Leptin. 

2021 ◽  
Author(s):  
◽  
Shruti Patel

<p>The capacity of an oocyte to mature during ovarian follicular development is a key process in reproductive biology. Bidirectional communication between mammalian oocytes and their associated follicular somatic cells (cumulus-cells) is essential for oocyte maturation. Historically, studies examining the control of ovarian follicular development focused mainly on the endocrine (external) signalling but recently intraovarian (paracrine) regulation has also been shown to be important. In addition, signalling via gap junctions between follicular cells had also been crucial for oocyte maturation and follicular development. In antral follicles, gap junction activity between the oocyte and adjacent cumulus cells first increase during follicular growth and shortly before ovulation they decrease as the oocyte resumes meiosis once more before ovulation. The range of factors that modulate gap junction activity of oocyte-cumulus cell complexes (COC) is largely unknown. The aims of these studies were to develop an assay to assess the rate of transfer of low molecular weight materials from cumulus cells to the oocyte via gap junctions. The first objective was to validate a bioassay by which to test the effects of hormones, second messengers, and growth factors on gap junction activity in rat cumulus-oocyte complexes. In this study, COCs were collected from antral follicles of untreated post-pubertal Sprague Dawley rats. Gap junction activity was measured in the presence or absence of different treatments using the fluorescence dye, Calcein-AM and in the presence of a phosphodiesterase type 3 inhibitor (PDE3) milrinone. Transfer of the calcein dye from cumulus cells into the oocyte was measured at various times using CRAIC fluorescence system. The results showed that removal of the COCs from their follicular environments disrupted the gap junction activity which recovered over time in culture media. COC were sensitive to changes in pH concentration and gap junction activity could be blocked with 8 ocatnol-1 but not carbenoxolone. Treating rat COCs with dibutyryl cAMP or agents that maintained or increased intracellular cAMP levels like milrinone or forskolin were unable to modulate gap junction activity. Further, the combined effect of the oocyte-derived growth factors: growth differentiating factor 9 (GDF9) with bone morphogenetic protein 15 (BMP15) was also unable to modulate the rate of calcein dye transfer from cumulus cells to the oocyte. Ovarian steroids such as oestradiol and testosterone by themselves were unable to modulate the gap junction activity of rat COC but the combined treatment of testosterone plus forskolin or testosterone plus forskolin plus insulin-like growth factor 1 (IGF-1) increased the rate of dye transfer from cumulus cells to the oocyte. In conclusion, a fluorescence dye transfer assay was developed to measure the effects of different treatments on gap junction activity in rat COC. Under in vitro conditions, it was established that the combination of steroid and cAMP stimulators or a steroid, cAMP stimulator with IGF1 but not these reagents individually could enhance the recovery of gap junction function in rat COC. The outcomes of these experiments may help to provide new insights into developing suitable in vitro conditions, for the in vitro maturation of mammalian oocytes. Also, the newly developed assay may serve as a useful in vitro model to evaluate the effects of hormones, nutritional supplements and other factors on COC functions.</p>


2021 ◽  
Author(s):  
◽  
Shruti Patel

<p>The capacity of an oocyte to mature during ovarian follicular development is a key process in reproductive biology. Bidirectional communication between mammalian oocytes and their associated follicular somatic cells (cumulus-cells) is essential for oocyte maturation. Historically, studies examining the control of ovarian follicular development focused mainly on the endocrine (external) signalling but recently intraovarian (paracrine) regulation has also been shown to be important. In addition, signalling via gap junctions between follicular cells had also been crucial for oocyte maturation and follicular development. In antral follicles, gap junction activity between the oocyte and adjacent cumulus cells first increase during follicular growth and shortly before ovulation they decrease as the oocyte resumes meiosis once more before ovulation. The range of factors that modulate gap junction activity of oocyte-cumulus cell complexes (COC) is largely unknown. The aims of these studies were to develop an assay to assess the rate of transfer of low molecular weight materials from cumulus cells to the oocyte via gap junctions. The first objective was to validate a bioassay by which to test the effects of hormones, second messengers, and growth factors on gap junction activity in rat cumulus-oocyte complexes. In this study, COCs were collected from antral follicles of untreated post-pubertal Sprague Dawley rats. Gap junction activity was measured in the presence or absence of different treatments using the fluorescence dye, Calcein-AM and in the presence of a phosphodiesterase type 3 inhibitor (PDE3) milrinone. Transfer of the calcein dye from cumulus cells into the oocyte was measured at various times using CRAIC fluorescence system. The results showed that removal of the COCs from their follicular environments disrupted the gap junction activity which recovered over time in culture media. COC were sensitive to changes in pH concentration and gap junction activity could be blocked with 8 ocatnol-1 but not carbenoxolone. Treating rat COCs with dibutyryl cAMP or agents that maintained or increased intracellular cAMP levels like milrinone or forskolin were unable to modulate gap junction activity. Further, the combined effect of the oocyte-derived growth factors: growth differentiating factor 9 (GDF9) with bone morphogenetic protein 15 (BMP15) was also unable to modulate the rate of calcein dye transfer from cumulus cells to the oocyte. Ovarian steroids such as oestradiol and testosterone by themselves were unable to modulate the gap junction activity of rat COC but the combined treatment of testosterone plus forskolin or testosterone plus forskolin plus insulin-like growth factor 1 (IGF-1) increased the rate of dye transfer from cumulus cells to the oocyte. In conclusion, a fluorescence dye transfer assay was developed to measure the effects of different treatments on gap junction activity in rat COC. Under in vitro conditions, it was established that the combination of steroid and cAMP stimulators or a steroid, cAMP stimulator with IGF1 but not these reagents individually could enhance the recovery of gap junction function in rat COC. The outcomes of these experiments may help to provide new insights into developing suitable in vitro conditions, for the in vitro maturation of mammalian oocytes. Also, the newly developed assay may serve as a useful in vitro model to evaluate the effects of hormones, nutritional supplements and other factors on COC functions.</p>


2013 ◽  
Vol 16 (1) ◽  
pp. 101-105
Author(s):  
N. Smolinska ◽  
T. Kaminski ◽  
G. Siawrys ◽  
J. Przala

Abstract Leptin is a polypeptide hormone produced predominantly in adipocytes. It has been found to be implicated in the regulation of satiety and energy homeostasis. A role for leptin in reproduction was later suggested by findings that this hormone may be involved in the regulation of the hypothalamic- pituitary-gonadal axis via endocrine, paracrine and/or autocrine pathways. The objective of the study was to investigate the ontogeny of the long isoform of leptin receptor (OB-Rb) gene in porcine ovarian follicles. The expression of OB-Rb gene was detected in porcine primordial, primary, secondary and antral follicles by in situ hybridization. In summary, our data suggest that leptin might have a direct effect on porcine follicles and plays an important role in the follicular development.


Reproduction ◽  
2004 ◽  
Vol 128 (4) ◽  
pp. 379-386 ◽  
Author(s):  
K P McNatty ◽  
L G Moore ◽  
N L Hudson ◽  
L D Quirke ◽  
S B Lawrence ◽  
...  

Ovulation rate in mammals is determined by a complex exchange of hormonal signals between the pituitary gland and the ovary and by a localised exchange of hormones within ovarian follicles between the oocyte and its adjacent somatic cells. From examination of inherited patterns of ovulation rate in sheep, point mutations have been identified in two oocyte-expressed genes, BMP15 (GDF9B) and GDF9. Animals heterozygous for any of these mutations have higher ovulation rates (that is, + 0.8–3) than wild-type contemporaries, whereas those homozygous for each of these mutations are sterile with ovarian follicular development disrupted during the preantral growth stages. Both GDF9 and BMP15 proteins are present in follicular fluid, indicating that they are secreted products. In vitro studies show that granulosa and/or cumulus cells are an important target for both growth factors. Multiple immunisations of sheep with BMP15 or GDF9 peptide protein conjugates show that both growth factors are essential for normal follicular growth and the maturation of preovulatory follicles. Short-term (that is, primary and booster) immunisation with a GDF9 or BMP15 peptide-protein conjugate has been shown to enhance ovulation rate and lamb production. In summary, recent studies of genetic mutations in sheep highlight the importance of oocyte-secreted factors in regulating ovulation rate, and these discoveries may help to explain why some mammals have a predisposition to produce two or more offspring rather than one.


2017 ◽  
Vol 29 (1) ◽  
pp. 202 ◽  
Author(s):  
A. Lange-Consiglio ◽  
C. Perrini ◽  
P. Esposti ◽  
F. Cremonesi

The in vitro maturation of canine oocyte is problematic because it is difficult to reproduce the oviducal microenvironment where the in vivo maturation occurs. Because cells are able to communicate with each other by paracrine action, oviducal cells could be in vitro cultivated to obtain the conditioned medium (CM) consisting of soluble factors and microvesicles (MV), which represent a carrier for nonsoluble molecules including microRNA. The aim of the present work was to investigate the effect of the addition of CM or MV, secreted by oviducal cells, to the canine in vitro maturation medium. To generate CM, cells from oviducts of 3 animals in late oestrus were cultured for 5 days at 38.5°C in a humidified atmosphere of 5% CO2. Supernatants were collected, pooled, centrifuged at 2500 × g, and stored at −80°C. Microvesicles were obtained by ultracentrifugation of CM at 100,000 × g for 1 h at 4°C and measured for concentration and size by a Nanosight instrument. Ovaries were obtained from 50 healthy domestic bitches (1–4 years old) of different breeds that underwent ovariectomy regardless of the oestrous cycle. Cumulus-oocyte complexes were released by slicing the ovarian cortex with a scalpel blade, and only Grade 1 cumulus-oocyte complexes (darkly granulated cytoplasm and surrounded by 3 or more compact cumulus cell layers) 110 to 120 µm in diameter were selected for culture. Maturation was performed at 38.5°C in a humidified atmosphere of 5% CO2 and 5% of O2 in bi-phasic systems: 24 h in SOF with 5.0 μg mL−1 of LH followed by 48 h in SOF supplemented with 10% of oestrous bitch serum and 10% CM or 50, 75, 100, or 150 × 106 MV mL−1 labelled with PKH-26. Control was the same medium without CM or MV. Oocytes were observed under a fluorescent microscope to detect metaphase II (MII), by Hoechst staining, and the incorporation of MV. Statistical analysis was performed by chi-square test. Results show that canine oviducal cells secreted MV of 234 ± 23 nm in size, underling that these MV fall within the shedding vesicles category. The incorporation of labelled MV occurred at first in cumulus cells, at 48 h of maturation, and then, at 72 h, in oocyte cytoplasm. These MV had a positive effect on maturation rate (MII) at the concentration of 75 and 100 × 106 MV mL−1 compared with CM and control (20.34 and 21.82 v. 9.09 and 3.95%, respectively). The concentration of 150 × 106 MV mL−1 provided only 9.26% of MII. To understand the role of MV, we assessed the expression of 3 microRNA (miRNA-30b, miR-375, and miR-503) that are involved in some key pathways (WNT, MAPK, ERbB, and TGFβ) regulating follicular development and meiotic resumption. The lower rate of MII with the higher concentration of MV is possibly due to the high level of miR-375, which recent literature shows to suppress the TGFβ pathway, leading to impaired oocyte maturation. In conclusion, the oviducal MV, or specific microRNA, are involved in cellular trafficking during oocyte maturation, and their possible use in vitro could facilitate the exploitation of canine reproductive biotechnologies.


2004 ◽  
Vol 34 (3) ◽  
pp. 495-501 ◽  
Author(s):  
Sheyla Farhayldes Souza Domingues ◽  
Luiz Viana Diniz ◽  
Sonia Helena Costa Furtado ◽  
Otavio Mitio Ohashi ◽  
David Rondina ◽  
...  

The present study aimed to obtain quanti-qualitative data about the follicular ovarian population in Cebus apella females. Seven ovaries were obtained from 4 C. apella adult females. The ovaries were subjected to light microscopy. The number of preantral and antral follicles for each ovary was estimated using the Fractionator method. The preantral follicles were classified into primordial, transitional, primary and secondary follicles. Antral follicles were those that presented an antral cavity. All counted follicles were classified as normal or degenerated. The diameter of the follicles, oocytes and their nuclei were determined to accompany the follicular development. All results were represented as mean ± SE. The number of preantral follicles was 56,938 ± 21,888 and 49,133 ± 26,896 for the right and left ovaries, respectively. The percentage of normal follicles was 80 ± 4.95%. The follicular diameter ranged from 22 ± 0.5 µm to 61.2 ± 4.0 µm. Regarding the antral follicles, the number of normal and degenerate follicles per ovary were 60.0 ± 19.0 and 3 ± 1.8 follicles, respectively. The antral follicular diameter was 514.4 + 56.6 µm. In conclusion, the information obtained in this study can be used as a parameter for subsequent in vivo or in vitro studies about folliculogenesis in non-human neotropical primates of the C. apella species.


1996 ◽  
Vol 8 (6) ◽  
pp. 935 ◽  
Author(s):  
AW Schuetz ◽  
DG Whittingham ◽  
R Snowden

The cell cycle characteristics of mouse cumulus granulosa cells were determined before, during and following their expansion and mucification in vivo and in vitro. Cumulus-oocyte complexes (COC) were recovered from ovarian follicles or oviducts of prepubertal mice previously injected with pregnant mare serum gonadotrophin (PMSG) or a mixture of PMSG and human chorionic gonadotrophin (PMSG+hCG) to synchronize follicle differentiation and ovulation. Cell cycle parameters were determined by monitoring DNA content of cumulus cell nuclei, collected under rigorously controlled conditions, by flow cytometry. The proportion of cumulus cells in three cell cycle-related populations (G0/G1; S; G2/M) was calculated before and after exposure to various experimental conditions in vivo or in vitro. About 30% of cumulus cells recovered from undifferentiated (compact) COC isolated 43-45 h after PMSG injections were in S phase and 63% were in G0/G1 (2C DNA content). Less than 10% of the cells were in the G2/M population. Cell cycle profiles of cumulus cells recovered from mucified COC (oviducal) after PMSG+hCG-induced ovulation varied markedly from those collected before hCG injection and were characterized by the relative absence of S-phase cells and an increased proportion of cells in G0/G1. Cell cycle profiles of cumulus cells collected from mucified COC recovered from mouse ovarian follicles before ovulation (9-10 h after hCG) were also characterized by loss of S-phase cells and an increased G0/G1 population. Results suggest that changes in cell cycle parameters in vivo are primarily mediated in response to physiological changes that occur in the intrafollicular environment initiated by the ovulatory stimulus. A similar lack of S-phase cells was observed in mucified cumulus cells collected 24 h after exposure in vitro of compact COC to dibutyryl cyclic adenosine monophosphate (DBcAMP), follicle-stimulating hormone or epidermal growth factor (EGF). Additionally, the proportion of cumulus cells in G2/M was enhanced in COC exposed to DBcAMP, suggesting that cell division was inhibited under these conditions. Thus, both the G1-->S-phase and G2-->M-phase transitions in the cell cycle appear to be amenable to physiological regulation. Time course studies revealed dose-dependent changes in morphology occurred within 6 h of exposure in vitro of COC to EGF or DBcAMP. Results suggest that the disappearance of the S-phase population is a consequence of a decline in the number of cells beginning DNA synthesis and exit of cells from the S phase following completion of DNA synthesis. Furthermore, loss of proliferative activity in cumulus cells appears to be closely associated with COC expansion and mucification, whether induced under physiological conditions in vivo or in response to a range of hormonal stimuli in vitro. The observations indicate that several signal-transducing pathways mediate changes in cell cycle parameters during cumulus cell differentiation.


2010 ◽  
Vol 24 (6) ◽  
pp. 1230-1239 ◽  
Author(s):  
You-Qiang Su ◽  
Koji Sugiura ◽  
Qinglei Li ◽  
Karen Wigglesworth ◽  
Martin M. Matzuk ◽  
...  

Abstract LH triggers the maturation of the cumulus-oocyte complex (COC), which is followed by ovulation. These ovarian follicular responses to LH are mediated by epidermal growth factor (EGF)-like growth factors produced by granulosa cells and require the participation of oocyte-derived paracrine factors. However, it is not clear how oocytes coordinate with the EGF receptor (EGFR) signaling to achieve COC maturation. The aim of the present study was to test the hypothesis that oocytes promote the expression of EGFR by cumulus cells, thus enabling them to respond to the LH-induced EGF-like peptides. Egfr mRNA and protein expression were dramatically reduced in cumulus cells of mutant mice deficient in the production of the oocyte-derived paracrine factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15). Moreover, microsurgical removal of oocytes from wild-type COCs dramatically reduced expression of Egfr mRNA and protein, and these levels were restored by either coculture with oocytes or treatment with recombinant GDF9 or GDF9 plus recombinant BMP15. Blocking Sma- and Mad-related protein (SMAD)2/3 phosphorylation in vitro inhibited Egfr expression in wild-type COCs and in GDF9-treated wild-type cumulus cells, and conditional deletion of Smad2 and Smad3 genes in granulosa cells in vivo resulted in the reduction of Egfr mRNA in cumulus cells. These results indicate that oocytes promote expression of Egfr in cumulus cells, and a SMAD2/3-dependent pathway is involved in this process. At least two oocyte-derived growth factors, GDF9 and BMP15, are required for EGFR expression by cumulus cells.


Author(s):  
Nazli Akin ◽  
Lucia von Mengden ◽  
Anamaria-Cristina Herta ◽  
Katy Billooye ◽  
Julia Leersum ◽  
...  

Abstract In vitro maturation (IVM) is an assisted reproduction technique with reduced hormone-related side effects. Several attempts to implement IVM in routine practice have failed, primarily due to its relatively low efficiency compared to conventional in vitro fertilization (IVF). Recently, capacitation (CAPA)-IVM, a novel two-step IVM method, has improved the embryology outcomes through synchronizing the oocyte nuclear and cytoplasmic maturation. However, the efficiency gap between CAPA-IVM and conventional IVF is still noticeable especially in the numerical production of good quality embryos. Considering the importance of glucose for oocyte competence, its metabolization is studied within both in vivo and CAPA-IVM matured mouse cumulus-oocyte-complexes (COCs) through direct measurements in both cellular compartments, from transcriptional and translational perspectives, to reveal metabolic shortcomings within the CAPA-IVM COCs. These results confirmed that within in vivo COC, cumulus cells are highly glycolytic, whereas oocytes, with low glycolytic activity, are deviating their glucose towards pentose phosphate pathway. No significant differences were observed in the CAPA-IVM oocytes compared to their in vivo counterparts. However, their cumulus cells exhibited a precocious increase of glycolytic activity during the pre-maturation culture step and activity was decreased during the IVM step. Here, specific alterations in mouse COC glucose metabolism due to CAPA-IVM culture were characterized using direct measurements for the first time. Present data show that, while CAPA-IVM cumulus cells are able to utilize glucose, their ability to support oocytes during final maturation is impaired. Future CAPA-IVM optimization strategies could focus on adjusting culture media energy substrate concentrations and/or implementing co-culture strategies.


2009 ◽  
Vol 21 (1) ◽  
pp. 184
Author(s):  
E. A. M. Amorim ◽  
L. S. Amorim ◽  
C. A. A. Torres ◽  
J. D. Guimãres ◽  
J. F. Fonseca ◽  
...  

Protein and urea concentrations impair oocyte and embryo development in vivo and in vitro through an unclear mechanism. A possible way to understand this process is to determine the concentration of hormones and metabolites in follicular fluid associated with normal development. The objective of this study was to determine the effect of dietary urea levels on follicular fluid concentration of hormones and metabolites and oocyte quality. A trial was conducted with 9 nonpregnant and nonlactating Saanen goats, which had been distributed in a randomized design and fed with diets with 0 (n = 4) and 2.4% of urea in the total dry matter (DM) of the diet (n = 5). Before follicle aspiration by laparotomy, the goats were synchronized by inserting intravaginal sponges containing 60 mg of acetate medroxyprogesterone (Progespon®, Sintex) for 10 days followed by 125 μg of cloprostenol (Ciosin® Coopers) 48 h before the removal of the sponge. The sponge was removed immediately before the follicular aspiration. The follicular development was stimulated with 70 mg of NIH-FSH-P1 (Folltropin V® Vetrepharm) i.m., and 300 IU of eCG i.m., (Novormon® Sintex) given 36 h before the follicular aspiration. Fluid from the 2 lartest follicles of each ovary were analyzed to determine the concentration of estradiol, progesterone, and testosterone by quimioluminesence, and glucose and urea concentrations were measured by enzymatic kit. The other follicles in each ovary were aspired with new needles and syringes and the oocyte quality was recorded. Oocytes were classified according to cytoplasma aspect and number of granulosa cells: Class A (dark cytoplasm and uniform aspect) with 3 (AMG) and <3 layers of cumulus cells (AmG); class B (cytoplasm with color alterations, desuniform aspect and vacuoles) with 3 (BMG) and <3 layers of cumulus cells (BmG); number of partially denuded oocytes (PD) and number of denuded oocytes (DO). Data were analyzed by ANOVA and treatment difference separated by SNK test. Follicular fluid estradiol concentration was lower in goats fed with urea (4.02 ± 0.16; 4.97 ± 0.18 ng mL–1; P < 0.05), progesterone concentration did not differ between treatments (2.48 ± 0.58; 3.37 ± 0.52 ng mL–1; P > 0.05), testosterone concentration was lower in the control animals (1.17 ± 0.48; 3.20 ± 0.43 ng mL–1; P < 0.05). The glucose (91.44 ± 3.60; 84.78 ± 5.58 mg dL–1) and urea concentration (23.04 ± 1.06; 18.00 ± 2.35) were greater in the animals treated with 2.4% compared with 0% of urea (P < 0.05), respectively. The number of oocytes in the different categories was not affected by treatment (P > 0.05): AMG 1.20 ± 1.09 v. 0.50 ± 0.57, AmG 4.20 ± 2.16 v. 3.50 ± 3.10, BMG 0.40 ± 0.54 v. 0.25 ± 0.50, BmG 1.40 ± 0.54 v. 1.75 ± 1.25, DO 10.20 ± 3.76 v. 11.50 ± 5.44, in the 0 and 2.4% of urea groups respectively. Only the number of PD (1.60 ± 0.54 v. 3.50 ± 1.91) recovered from animals treated with 2.4% was greater than in controls (P < 0.05). The hormone and metabolites concentration in follicular fluid as well as the oocyte quality was affected by the urea concentration of the diet. Supported by grant from: CNPq, FAPEMIG, Shering Plough®, Tecnopec®, Carbogel®.


Sign in / Sign up

Export Citation Format

Share Document