scholarly journals Assessment of genetic variability, heritability and genetics advance in wheat (Triticum aestivum L.) genotypes under normal and heat stress condition

Author(s):  
Ravi Singh Thapa ◽  
Pradeep Kumar Sharma ◽  
Anuj Kumar ◽  
Tejbir Singh ◽  
Dharmendra Pratap

One ninety diverse wheat genotypes were evaluated for genetic varaibilty, heritability and genetic advance under norrmal and heat stress environment at the Research Farm of Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut U. P. (India). The genotypes were grown in simple augmented block design and data were collected on fifteen morpho-agronomic characters. Analysis of observed data showed that the mean squares due to treatments for all the traits in both the environment were highly significant. GCV and PCV were highest for canopy temperature depression, grain weight/spike, biological yield/plant, grain yield/plant, tiller number./plant and lowest for days to anthesis. Heritability (bs) estimates were high for canopy temperature depression (CTD), followed by biological yield/plant, grain weight/ spike, grain number. /spike, 1000- grain weight, grain yield/plant, tiller number./plant and lowest for days to heading and days to anthesis in case of both environments. The estimates of genetic advance (GA) were highest for canopy temperature depression followed by grain weight/spike, biological yield/plant, grain yield/spike, tiller number./plant, grain number./spike and lowest for days to heading and days to anthesis under both ( numberrmal and heat stress) environment. This study suggests that the presence of adequate genetic variability, heritability and genetic advance for these traits under norrmal and heat stress environment is suitable for breeding programs and crop improvement.

2018 ◽  
Vol 16 (3) ◽  
pp. 457-463
Author(s):  
Kaji Md. Wayaz Hossain ◽  
Sharif Ar Raffi

Plant physiological parameters such as membrane thermostability, canopy temperature depression, leaf chlorophyll content and yield related traits like no. of spikelets per spike, no. of grains per spike, 200-grain weight and grain yield of 18 wheat genotypes were carried out to assess for heat tolerance. Performances of all the genotypes were found to have significant differences for all the traits except canopy temperature depression. But, canopy temperature depression with some other traits like leaf chlorophyll content, no. of grains per spike, 200-grain weight and grain yield per plant demonstrated significant differences when it grown in heat stress condition. In general, genotypes with higher leaf chlorophyll content and enhanced membrane thermostability demonstrated higher 200-grain weight or grain yield. Besides, in spite of having heat tolerant traits, several genotypes performed poor due to their poor genotypic potential. The present investigation has successfully isolated several genotypes viz. H024, H023, H022 and H018 with desirable traits related to heat tolerance based on overall performance while grown under heat stress. These genotypes can be used as gene source for future breeding program to improve heat tolerance of the local wheat cultivars. J. Bangladesh Agril. Univ. 16(3): 457–463, December 2018


2010 ◽  
Vol 39 (1) ◽  
pp. 51-55 ◽  
Author(s):  
S Sikder ◽  
NK Paul

Testing of four heat tolerant (Gourab, Sourav, Kanchan and Shatabdi) and two heat sensitive (Sonora and Kalyansona) wheat cultivars under normal and late growing post-anthesis heat stress conditions revealed higher pre-anthesis stem reserves mobilization to the final grain weight and floret sterility in heat sensitive cultivars compared to heat tolerant cultivars. The heat tolerant cultivars showed higher canopy temperature depression than the heat sensitive cultivars in both the growing conditions indicating the higher ability of heat tolerant cultivars to maintain cooler canopy environment than the heat sensitive ones.Key words: Post-anthesis; Heat stress; Floret sterility; Canopy temperature; Mobilization DOI: 10.3329/bjb.v39i1.5526Bangladesh J. Bot. 39(1): 51-55, 2010 (June)


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
PUNIT KUMAR ◽  
VICHITRA KUMAR ARYA ◽  
PRADEEP KUMAR ◽  
LOKENDRA KUMAR ◽  
JOGENDRA SINGH

A study on genetic variability, heritability and genetic advance for seed yield and component traits was made in 40 genotypes of riceduring kharif 2011-2012 at SHIATS, Allahabad. The analysis of variance showed highly significant differences among the treatments for all the 13 traits under study.The genotypes namely CN 1446-5-8-17-1-MLD4 and CR 2706 recorded highest mean performance for panicles per hill and grain yield. The highest genotypic and phenotypic variances (VG and VP) were recorded for spikelets per panicle (3595.78 and 3642.41) followed by biological yield (355.72 and 360.62) and plant height (231.48 and 234.35).High heritability (broad sense) coupled with high genetic advance was observed for plant height, flag leaf length, panicles per hill, tillers per hill, days to maturity, spikelet’s per panicle, biological yield, harvest index, 1000 grain weight and grain yield, indicating that selection will be effective based on these traits because they were under the influence of additive and additive x additive type of gene action. Highest coefficient of variation (PCV and GCV) was recorded for tillers per hill (18.42% and 17.23%), panicle per hill (19.76 % and 18.68%), spikelet’s per panicle (34.30 and34.07 %), biological yield (28.31 % and 28.12 %), 1000 grain weight (15.57 % and 15 31 %) and grain yield (46.66% and 23.54 %), indicating that these traits are under the major influence of genetic control, therefore the above mentioned traits contributed maximum to higher grain yield compared to other traits, indicating grain yield improvement through the associated traits.


2019 ◽  
Vol 4 (02) ◽  
pp. 135-139
Author(s):  
Ravi Kumar ◽  
Anant Kumar ◽  
Joginder Singh

Genetic variability, heritability, genetic advance and correlation coefficients were studied in 104 genotypes of wheat genotypes for yield and yield contributing traits. Both GCV and PCV were found to be moderate for flag leaf area, biological yield per plant, grain yield per plant and ash content. The days to ear emergence, days to maturity, plant height, harvest index and 1000-grain weight low GCV and PCV values were observed. Number of productive tillers per plant and spike length recorded moderate value of PCV and low value of GCV. High estimate of heritability in narrow sense was recorded for number of productive tillers per plant, biological yield per plant, harvest index and grain yield per plant, while it was moderate for days to ear emergence, days to maturity, plant height, flag leaf area, spike length, grains per spike and low heritability were recorded for 1000-grain weight. High heritability coupled with high genetic advance in per cent of mean was recorded for biological yield per plant and grain yield per plant. Grain yield per plant exhibited highly significant and positive association with 1000-grain weight, harvest index, biological yield per plant, grains per spike, number of productive tillers per plant and days to maturity.


Author(s):  
Vichitra Kumar Arya ◽  
Jogendra Singh ◽  
Lokendra Kumar ◽  
Amit Kumar Sharma ◽  
Rajendra Kumar ◽  
...  

<span>Forty nine genotypes of wheat were evaluated for 12 quantitative and one quality traits during 2010-11. The experiment was conducted in randomized complete block design with three replications at Crop Research Centre, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut. The mean, range, genotypic and phenotypic coefficient of variation, heritability in broad sense, genetic advance correlation and path analysis were analyzed. Plant height, number of productive tillers per plant, spike length, 1000-grain weight, biological yield per plant and harvest index were significant and positive correlated with grain yield per plant. The phenotypic and genotypic path coefficients exhibited high positive direct contribution of number of productive tillers per plant, plant height, harvest index and 1000-grain weight towards grain yield.The positive indirect effect of plant height on grain yield was registered via days to maturity, number of spikelets per spike, 1000-grain weight and biological yield per plant. Number of productive tillers per plant revealed contribution on grain yield via number of grains per spike, 1000 grain weight, biological yield per plant and harvest index revealing that indirect selection of these characters would be effective in improving grain yield per plant. Higher genotypic coefficient of variance along with high heritability and genetic advance for grain yield per plant, plant height, number of spikelets per spike, number of grains per spike and 1000-grain weight would also be of great use for indirect selection for improvement in yield per plant. </span>


2018 ◽  
Vol 6 (1) ◽  
pp. 01-07 ◽  
Author(s):  
Amir Sohail ◽  
Hidayatur Rahman ◽  
Farhat Ullah ◽  
Syed M.A. Shah ◽  
Tanvir Burni ◽  
...  

This research was carried out to check genetic variability, heritability and genetic advance in 11 F4 bread wheat (Triticum aestivum L.) genotypes (10 F4 lines and one check) in a randomized block design with three replications at the University of Agriculture Peshawar, Pakistan during 2015-16. Data was/were taken on parameters such as days to heading (days), plant height (cm), flag leaf area (cm2), spike length (cm), grain weight spike-1 (g), 1000-grain weight (g), grain yield plant-1 (g), biological yield plant-1 (g)and harvest index (%). The statistically significant difference(s) was/were detected for the investigated traits.  The high magnitude of heritability (˃0.62) was noted for all parameters except spike length (0.57) which was moderate. Low expected genetic advance was recorded for days to heading (3.90%) and spike length (8.13%), moderate expected genetic advance was observed for plant height (9.95%), grain weight spike-1 (11.54%) and 1000 grain weight (13.41%), while high expected genetic advance was noted for flag leaf area (24.72%), grain yield plant-1 (20.45%), biological yield plant-1 (23.64%) and harvest index (24%). Grain yield plant-1 was non-significantly and positively correlated with days to heading (rG = 0.19NS and rP = 0.07 NS),  plant height (rG = 0.30 NS and rP = 0.26 NS), flag leaf area (rG = 0.25 NS and rP = 0.18 NS), spike length (rG = 0.01 NS and rP = 0.07 NS), grain weight spike-1 (rG = 0.28 NS and rP = 0.22 NS) and 1000-grain weight (rG = 0.02 NS and rP = 0.07 NS) at both genotypic and phenotypic levels. While significantly and positively correlated with biological yield plant-1 (rG = 0.34* and rP = 0.33*) and harvest index (rG = 0.58** and rP = 0.66**) at both genotypic and phenotypic levels. High heritability showed that these traits are under genetic control and single plant selection could be started in F5 generation. The strong correlation of grain yield plant-1 with the mentioned traits showed that grain yield could be indirectly improved by improving these traits.


Sign in / Sign up

Export Citation Format

Share Document