Screening of Groundnut (Arachis hypogaea L.) Genotypes for Identification of Sources of Resistance against Leaf Spot Disease

Author(s):  
S. R. Zanjare ◽  
A. V. Suryawanshi ◽  
Snehal S. Zanjare ◽  
V. R. Shelar ◽  
Y. S. Balgude

Background: Groundnut (Arachis hypogaea L.) is the fourth most important oil seed crop in the world. The early and late spots are a foliage disease more common and more destructive of groundnut which cause severe yield losses up to 70% and reduces the quality of the pod and fodder. Recent efforts have targeted on developing resistant source against leaf spot disease which are helpful for discarding the hazardous toxic chemical compounds used for controlling the disease. The current study aimed to identify the sources of resistance to leaf spot from the newly identified genotypes as well as from wild species and to study the way in which these were responding to the to the disease development. Methods: Seventy three groundnut genotypes were screened against late leaf spot disease under artificial epiphytotic conditions in field at AICRP on Groundnut, MPKV, Rahuri during kharif 2015-16. The observations of disease intensity and rate of infection were recorded. Result: Among the Seventy three groundnut genotypes, 10 genotypes showed resistant and 33 genotypes showed the moderately resistant reaction to leaf spot disease. The 25 entries showed the susceptible and 05 genotypes showed the highly susceptible reaction to the leaf spot disease. All the susceptible cultivars belong to A. hypogaea sub. sp. fastigiata var. fastigiata to as Spanish bunch. These 10 resistant genotypes of groundnut including two wild species viz., RHRG 6083, KDG 128, GPBD 4, ICGV 94118, ICGV 4983, ICG 12672, ICGV 13160 (A. batizocoi), ICGV 13165 (A. cardenasi), ICG 11426 and ICGV8193 were selected for intensive artificial screening under glasshouse conditions and also confirmed resistance. The resistant lines will be useful to develop introgression lines using marker-assisted backcrossing approach to improve foliar fungal disease resistance in popular groundnut varieties.

1999 ◽  
Vol 26 (1) ◽  
pp. 4-8 ◽  
Author(s):  
J. A. Baysinger ◽  
H. A. Melouk ◽  
D. S. Murray

Abstract Early leaf spot is a common disease of peanut caused by the fungus Cercospora arachidicola Hori. Experiments were conducted to evaluate the effect of postemergence herbicides on the conidial germination of C. arachidicola and on the incidence of early leaf spot disease in peanut (Arachis hypogaea L.) in a greenhouse. Conidial germination was enhanced (≥ 100%) at concentrations of 1, 100, and 1000 mg/L of 2,4-DB compared with the untreated control. Lactofen reduced conidial germination by 42% compared with the control at concentrations as low as 100 mg/L and completely inhibited germination at concentrations ≥ 5000 mg/L. A concentration of 10,000 mg/L acifluorfen and 2,4-DB completely inhibited conidial germination. Acifluorfen, acifluorfen plus 2,4-DB, and lactofen decreased the sporulation of early leaf spot lesions. Lactofen reduced leaf spot incidence 12% and decreased sporulation of lesions 22% compared with the control. None of the herbicides increased the incidence of early leaf spot on peanut plants or the number of early leaf spot lesions per leaflet when compared with plants that received no herbicide.


1998 ◽  
Vol 25 (1) ◽  
pp. 35-39 ◽  
Author(s):  
W. J. Grichar ◽  
B. A. Besler ◽  
A. J. Jaks

Abstract Peanut (Arachis hypogaea L.) pod yield and response to early and late leaf spots [caused by Cercospora arachidicola S. Hori and Cercosporidium personatum (Berk. & M. A. Curtis) Deighton, respectively] were evaluated on six runner-type cultivars under four leaf spot spray programs using tebuconazole at 0.23 kg ai/ha and chlorothalonil at 1.26 kg ai/ha. The four leaf spot spray programs included unsprayed, 14-d schedule, 21-d schedule, and 28-d schedule. With the 14- and 21-d schedule, chlorothalonil was applied at the first and last applications with a maximum of four tebuconazole applications for the middle sprays. On the 28-d schedule, tebuconazole was applied four times. Under conditions of heavy leaf spot disease pressure where no fungicide was applied, Southern Runner and Georgia Browne were slightly less susceptible (although not significantly) to early or late leaf spot than Florunner, GK-7, Georgia Runner, or Sunrunner. Less leaf spot was present in the 14-d schedule compared to 21- or 28-d schedules. Although there was no yield difference between the 14-, 21-, or 28-d schedules, the plots sprayed on a 14-d schedule yielded 43% more than the unsprayed. When averaged across all spray schedules, Georgia Browne yielded 15% more peanuts than Georgia Runner.


2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Agnė Sadauskienė ◽  
Zita Brazienė ◽  
Zenonas Dabkevičius

The research was conducted on 11 sugar beet varieties, grown at the Rumokai Experimental Station of the Lithuanian Research Center for Agriculture and Forestry, in 2016 and 2017. The experiments were carried out on two backgrounds: the crops were not sprayed and sprayed with fungicide epoxiconazole 125 g l–1. During the study years, rust (causative agent Uromyces beticola), powdery mildew (causative agent Erysiphe betae Vaňha Weltzien) and leaf spot disease (causative agent Cercospora beticola Sacc.) were the most prevalent in sugar beet. Rust, the intensity of which was 9.66–61.79%, caused most damage to sugar beet. The intensity of powdery mildew was 12.71–55.98% and that of leaf spot disease was 7.47–54.23%. Of the investigated varieties of sugar beet, the most sensitive to leaf spot disease were ‘Merens’, ‘Balear’, ‘Davinci’, ‘Kashmir’ and ‘Pottok’, the most resistant were ‘Berton’, ‘Selma KWS’ and ‘Wellington’. ‘Merens’ and ‘Texel’ were the most sensitive to rust. This disease was least damaging to the ‘Minta’, ‘Berton’ and ‘Strauss’ varieties. Powdery mildew was most harmful to leaves of the ‘Merens’, ‘Balear’ and ‘Minta’ varieties of sugar beet. The most resistant to powdery mildew was ‘Texel’. According to the average two-year data, the most productive was the ‘Pottok’ variety, whose root yield was 90.46– 93.85 t ha–1. The ‘Straus’ variety had the highest sugar content. Epoxiconazole increased the sugar beet yield from 0.44 to 6.53 t ha–1 in 2016 and from 0.07 to 11.63 t ha–1 in 2017.


2001 ◽  
Vol 28 (2) ◽  
pp. 80-84 ◽  
Author(s):  
C. C. Holbrook ◽  
T. G. Isleib

Abstract The U.S. maintains a large (> 8000 accessions) and genetically diverse collection of peanut (Arachis hypogaea L.) germplasm. It is costly to screen all accessions within this collection for traits that could be useful in cultivar development. The objective of this research was to identify countries of origin that are rich sources of resistance to important peanut diseases. This would allow peanut breeders to focus their efforts on smaller subsets of the germplasm collection. Accessions in the peanut core collection were evaluated for resistance to late (Cercosporidium personatum Berk. & M. A. Curtis) and early (Cercospora arachidicola Hori) leaf spot, tomato spotted wilt Tospovirus (TSWV), the peanut root-knot nematode [Meloidogyne arenaria (Neal) Chitwood race 1], and Cylindrocladium black rot (CBR)[Cylindrocladium crotalarie (Loos) Bell & Sobers]. These data then were examined to determine if genes for resistance clustered geographically. Several geographical areas that appear to be rich sources for disease-resistant genes were identified. China had a relatively large number of accessions with resistance to the peanut root-knot nematode. Peru appeared to be a rich source of material with resistance to CBR. Resistance to late leaf spot was more frequent than expected in accessions from Bolivia and Ecuador. Bolivia was also a valuable source of resistance to early leaf spot. Early leaf spot resistance also was more prevalent than expected in accessions from India, Nigeria, and Sudan. India, Israel, and Sudan were valuable origins for material with resistance to TSWV. Accessions with multiple disease resistance were most common in India, Mozambique, and Senegal. This information should enable plant breeders to utilize more efficiently the genes for disease resistance that are available in the U.S. germplasm collection.


2012 ◽  
Vol 03 (05) ◽  
pp. 582-588 ◽  
Author(s):  
L. Tshilenge-Lukanda ◽  
K. K. C. Nkongolo ◽  
A. Kalonji-Mbuyi ◽  
R. V. Kizungu

Sign in / Sign up

Export Citation Format

Share Document