Microclimate Modification through Groundnut-Pigeon Pea Intercropping System and its Effect on Physiological Responses, Disease Incidence and Productivity

Author(s):  
C. Sudhalakshmi ◽  
S. Rani ◽  
N.K. Sathyamoorthi ◽  
B. Meena ◽  
S.P. Ramanathan ◽  
...  

Background: Groundnut (Arachis hypogaea) is the predominant leguminous oilseed crop of India which has turned out to be a sensitive victim to climate change episodes like rising CO2 levels, erratic rainfall pattern, high temperature and moisture stress leaving deleterious imprints in physiology, disease resistance, fertility and productivity. Globally climate change is anticipated to pull down groundnut productivity by 11-25%. Agronomic manipulations like altered time of sowing, intercropping and irrigation management helps in microclimate modification towards reaping higher productivity and economic returns in groundnut. Methods: Field experiments were conducted during 2019-2021 on sandy clay loam soil (Fluventic Ustropept) in a Randomized Block Design with three factors viz., differential cropping systems (sole groundnut, groundnut + red gram intercropping), rainfed and irrigation systems and differential sowing windows (Second fortnight of June, first and second fortnights of July). Growth parameters, physiological traits viz., photosynthetic rate, transpiration rate, stomatal conductance, canopy temperature and light interception, incidence of foliar diseases viz., leaf spot and rust; soil borne disease viz., stem rot, root rot and productivity of groundnut were recorded at critical crop growth stages. Result: Canopy temperature was higher in sole groundnut system while light interception was higher in groundnut - redgram intercropping system, however system productivity did not register statistical superiority between the cropping systems. Irrigated system exerted its influence over rainfed system in terms of pod and kernel yield of groundnut. Sowing of groundnut during second fortnight of June was beneficial than July sowing in pod and kernel yield of groundnut due to uniform distribution of rainfall during the growth and reproductive phases of crop. Although differential cropping systems did not register their impact on disease incidence of groundnut, irrigated system and first sowing windows recorded minimum incidence of root rot, stem rot, early leaf spot, late leaf spot and rust diseases compared to rainfed system and July sowing.

Plant Disease ◽  
1998 ◽  
Vol 82 (2) ◽  
pp. 263-263 ◽  
Author(s):  
A. J. Masuka

Rhizoctonia solani Kühn (teleomorph Thanatephorus cucumeris (A. B. Frank) Donk) anastomosis groups AG 4 and AG 3 cause, respectively, widespread stem rot and leaf spot diseases of tobacco in Zimbabwe (2). Stem rot leads to substantial field losses, necessitating routine chemical and biological control (1). A recent increase in reports on Rhizoctonia-induced damping-off in tobacco seedlings and lodging of mature field plants prompted detailed studies on the causal pathogen. Nuclear fluorescence microscopy studies of 83 isolates from diseased tobacco revealed the presence of binucleate isolates. The isolates were collected in 1981 (1 isolate), 1990 (1 isolate), 1996 (3 isolates), and 1997 (1 isolate) and caused damping-off in seedlings (2 isolates) and stem rot and lodging in field tobacco (4 isolates). We confirmed that all binucleate isolates contained only two nuclei per cell. There was variability in the number of nuclei among the multinucleate stem rot (mean 4.2, SE 0.265) and leaf spot (mean 7.5, SE 0.259) isolates. Two tested binucleate Rhizoctonia isolates were pathogenic to 7-week-old tobacco seedlings (cv. Kutsaga 35) in a greenhouse experiment, laid out as a randomized complete block design. Uninoculated healthy plants served as control. Based on a disease rating scale of 1 to 5 (1 = no disease and 5 = >50% stem damage), overall disease incidence was 88.9% 5 days after inoculation with macerated mycelium at the rate of 3.60 × 105 CFU per seedling, applied around the stem base. Over 50% of inoculated seedlings were rated in disease categories 4 and 5. Binucleate Rhizoctonia were consistently isolated from infected plants. A country-wide survey is being conducted to determine the incidence, distribution and severity of diseases caused by binucleate Rhizoctonia on tobacco in Zimbabwe. References: (1) J. S. Cole and Z. Zvenyika. Plant Pathol. 37:271, 1988. (2) S. I. Mpofu and A. M. Julian. J. Phytopathol. 140: 367, 1994.


Plant Disease ◽  
2002 ◽  
Vol 86 (6) ◽  
pp. 697-697
Author(s):  
M. L. Molinero-Ruiz ◽  
J. M. Melero-Vara

In 2001, sunflower (Helianthus annuus L.) plants with symptoms of stem and root rot and wilt were observed in Soria, Spain. Light brown, water-soaked lesions developed on the collar of infected plants and extended along the stem, affecting the pith and causing early and sudden wilt. White mycelium and sclerotia (0.5 to 2 mm long) formed in the pith of stems. The sclerotia were disinfested in NaClO (10% vol/vol) for 1 min, transferred to potato dextrose agar (PDA), and incubated at 20°C. The fungus consistently obtained was identified as Sclerotinia minor Jagger (1). Pathogenicity was confirmed in a greenhouse experiment (15 to 25°C, 13 h light). Seven-week-old plants of six genotypes of sunflower (‘Peredovik’, HA89, HA821, HA61, RHA274, and HA337) were inoculated by placing one PDA disk with active mycelial growth adjacent to each basal stem just below the soil line and covering it with peat/sand/silt (2:2:1, vol/vol). Six plants of each genotype were inoculated without wounding, and another six were inoculated immediately after stem base wounding with a scalpel; six wounded and uninoculated plants were used as controls. First symptoms (wilting) appeared 4 days after inoculation in all genotypes. Two weeks after inoculation, the percentage of dead plants ranged from 33 to 92% (depending on cultivar), white mycelium was observed at the base of affected plants, and sclerotia were present in the pith of diseased plants. There was no effect of plant wounding on disease incidence or severity, and the fungus was reisolated from inoculated plants. To our knowledge, this is the first report of S. minor in Spain. Reference: (1) L. M. Kohn. Mycotaxon IX 2:365, 1979.


2015 ◽  
Vol 16 (2) ◽  
pp. 63-70 ◽  
Author(s):  
A. K. Hagan ◽  
H. L. Campbell ◽  
K. L. Bowen ◽  
L. Wells

Release of peanut cultivars with enhanced tomato spotted wilt (TSW) resistance along with the decline in the incidence of this disease gives Alabama producers the option of earlier planting of irrigated peanuts to optimize farm operations and lower seeding rates to reduce input costs. Mid-April and mid-May plantings of the cvs. Florida-07, Georgia-06G, and Georgia Green at 6.6, 9.8, 13.1, and 19.7 seed/m were monitored over three years for TSW, stem rot, and leaf spot diseases as well as yield. Despite low TSW pressure and lack of a seeding rate response, disease incidence was higher in Georgia Green than Florida-07 and Georgia-06G with higher TSW indices noted for the April than May plantings of the former but not latter two cultivars. While not impacted by planting date, stem rot incidence, which was higher at 13.1 and 19.7 than 6.6 seed/m, was lower on Florida-07 than Georgia-06G and Georgia Green with the latter proving most susceptible. Although leaf spot intensity was not impacted by seeding rate, disease ratings were higher for May than April plantings, with Florida-07 and Georgia-06G having lower leaf spot ratings than Georgia Green in two of three study years. While planting date did not impact yield in two of three years, higher yields were recorded at 13.1 and 19.7 than 6.6 seed/m, with Florida-07 and Georgia-06G having higher yields than Georgia Green. Accepted for publication 16 February 2015. Published 20 April 2015.


Plant Disease ◽  
1998 ◽  
Vol 82 (1) ◽  
pp. 129-129 ◽  
Author(s):  
C. A. Clark ◽  
M. W. Hoy ◽  
J. P. Bond ◽  
C. Chen ◽  
Y.-K. Goh ◽  
...  

Bacterial root and stem rot of sweetpotato (Ipomoea batatas (L.) Lam.) was first fully characterized in the U.S. in 1977 (2). It was thought to be caused exclusively by Erwinia chrysanthemi. Although a previous report described sweetpotato as a host for E. carotovora subsp. carotovora, based on artificial inoculations, others have reported that neither E. carotovora subsp. carotovora nor E. carotovora subsp. atroseptica decay sweetpotato storage roots (1). In October 1995, storage roots of sweetpotato cv. Beauregard were received from St. Landry Parish, LA, that displayed typical bacterial root rot. Isolations from these roots yielded bacteria that showed a similarity of 0.945 to E. carotovora subsp. carotovora with the Biolog GN Bacterial Identification System (version 3.50). This isolate (Ecc-LH) also differed from isolates of E. chrysanthemi (Ech) from sweetpotato and other hosts in that it was insensitive to erythromycin, did not produce phosphatase or lecithinase, and did not produce gas from glucose. Ecc-LH differed from known strains of E. carotovora subsp. atroseptica in that it did not produce reducing substances from sucrose or acid from palatinose. When Beauregard storage roots were inoculated by inserting micropipette tips containing 50 μl of 1.0 × 108 CFU/ml, both Ecc-LH and Ech-48 produced typical bacterial root rot symptoms. However, when they were compared by infectivity titrations at 28 to 32°C, Ecc-LH was less virulent than Ech-48. Ecc-LH had an ED50 of approximately 1.0 × 106 CFU/ml and did not cause appreciable disease below inoculum concentrations of 1.0 × 105, whereas Ech-48 had an ED50 of approximately 1.0 × 108 and caused soft rot at the lowest concentration tested, 1.0 × 103. Similar disease incidence was observed in infectivity titrations at 22 to 24°C, but Ech-48 caused less severe soft rot. E. carotovora subsp. carotovora was reisolated from inoculated storage roots and its identity was reconfirmed by Biolog. When terminal vine cuttings of Beauregard were dipped in 1.0 × 108 CFU/ml and planted in a greenhouse, bacterial stem rot symptoms developed on plants inoculated with Ech-48 at about 4 weeks postinoculation, or when new growth began. However, no symptoms developed on plants inoculated with Ecc-LH. This is the first report of natural occurrence of E. carotovora subsp. carotovora causing bacterial root rot of sweetpotato in Louisiana. E. chrysanthemi remains the most important pathogen causing bacterial soft rot in sweetpotato since it is widely associated with sweetpotato, is more virulent on storage roots and also causes a stem rot. E. carotovora subsp. carotovora can cause root rot, but has been isolated in only one location to date, is less virulent on storage roots, and apparently does not cause stem rot on the predominant cultivar in U.S. sweetpotato production, Beauregard. References: (1) C. A. Clark and J. W. Moyer. 1988. Compendium of Sweet Potato Diseases. American Phytopathological Society, St. Paul, MN. (2) N. W. Schaad and D. Brenner. Phytopathology 67:302, 1977.


EDIS ◽  
2017 ◽  
Vol 2017 (4) ◽  
Author(s):  
Keith W. Wynn ◽  
Nicholas S. Dufault ◽  
Rebecca L. Barocco

This ten-page fact sheet includes a summary of various fungicide spray programs for fungal disease control of early leaf spot, late leaf spot, and white mold/stem rot of peanut in 2012-2016 on-farm trials in Hamilton County. Written by K.W. Wynn, N.S. Dufault, and R.L. Barocco and published by the Plant Pathology Department.http://edis.ifas.ufl.edu/pp334


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Federica Zanetti ◽  
Barbara Alberghini ◽  
Ana Marjanović Jeromela ◽  
Nada Grahovac ◽  
Dragana Rajković ◽  
...  

AbstractPromoting crop diversification in European agriculture is a key pillar of the agroecological transition. Diversifying crops generally enhances crop productivity, quality, soil health and fertility, and resilience to pests and diseases and reduces environmental stresses. Moreover, crop diversification provides an alternative means of enhancing farmers’ income. Camelina (Camelina sativa (L.) Crantz) reemerged in the background of European agriculture approximately three decades ago, when the first studies on this ancient native oilseed species were published. Since then, a considerable number of studies on this species has been carried out in Europe. The main interest in camelina is related to its (1) broad environmental adaptability, (2) low-input requirements, (3) resistance to multiple pests and diseases, and (4) multiple uses in food, feed, and biobased applications. The present article is a comprehensive and critical review of research carried out in Europe (compared with the rest of the world) on camelina in the last three decades, including genetics and breeding, agronomy and cropping systems, and end-uses, with the aim of making camelina an attractive new candidate crop for European farming systems. Furthermore, a critical evaluation of what is still missing to scale camelina up from a promising oilseed to a commonly cultivated crop in Europe is also provided (1) to motivate scientists to promote their studies and (2) to show farmers and end-users the real potential of this interesting species.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kamel Kamal Sabet ◽  
Magdy Mohamed Saber ◽  
Mohamed Adel-Aziz El-Naggar ◽  
Nehal Samy El-Mougy ◽  
Hatem Mohamed El-Deeb ◽  
...  

Five commercial composts were evaluated to suppress the root-rot pathogens (Fusarium solani (Mart.) App. and Wr, Pythium ultimum Trow, Rhizoctonia solani Kuhn, and Sclerotium rolfsii Sacc.) of cucumber plants under in vitro and greenhouse conditions. In vitro tests showed that all tested unautoclaved and unfiltrated composts water extracts (CWEs) had inhibitor effect against pathogenic fungi, compared to autoclaved and filtrated ones. Also, the inhibitor effects of 40 bacteria and 15 fungi isolated from composts were tested against the mycelial growth of cucumber root-rot pathogens. Twenty two bacteria and twelve fungal isolates had antagonistic effect against root-rot pathogens. The antagonistic fungal isolates were identified as 6 isolates belong to the genus Aspergillus spp., 5 isolates belong to the genus Penicillium spp. and one isolate belong to the genus Chaetomium spp. Under greenhouse conditions, the obtained results in pot experiment using artificial infested soil with cucumber root-rot pathogens showed that the compost amended soil reduced the percentage of disease incidence, pathogenic fungi population, and improved the cucumber vegetative parameters as shoot length, root length, fresh weight, and dry weight. These results suggested that composts are consequently considered as control measure against cucumber root-rot pathogens.


Plant Disease ◽  
1997 ◽  
Vol 81 (8) ◽  
pp. 892-896 ◽  
Author(s):  
E. L. Little ◽  
S. T. Koike ◽  
R. L. Gilbertson

Pseudomonas syringae pv. apii, causal agent of bacterial leaf spot (BLS) of celery, was first identified in California in 1989. By 1991, BLS was apparent in all celery-growing areas of the state. Greenhouse-produced transplants were affected most severely, and disease incidence approached 100% in some greenhouses. In this study, sources of inoculum and factors contributing to disease development were investigated in three Salinas Valley greenhouse operations during the 1991, 1992, and 1993 celery transplant seasons (January to August). Epiphytic P. syringae pv. apii was not detected on celery transplants until April or May of each year. Increased epiphytic populations preceded BLS outbreaks, and high-pressure, overhead irrigation favored bacterial infiltration and disease development. In seed-wash assays, P. syringae pv. apii was recovered from 5 of 24 commercial celery seed lots. In field tests, epiphytic P. syringae pv. apii was found on umbels of inoculated celery plants, and seeds from these plants were heavily contaminated with P. syringae pv. apii. Contaminated seed produced seedlings with large epiphytic P. syringae pv. apii populations. Hot-water treatment (50°C for 25 min) eliminated >99.9% of seed contamination. Based on these results, disease management techniques are proposed.


Sign in / Sign up

Export Citation Format

Share Document