scholarly journals Impact of Plant Growth Promoting Rhizobacteria in Sustainable Agriculture: An Important Natural Resource for Crop Improvement

2019 ◽  
Vol 5 (03) ◽  
pp. 210-214
Author(s):  
Debnirmalya Gangopadhyay ◽  
Ashmita Ghosh

It is usually admitted that the chemical fertilizers and pesticides used in modern agriculture create a real environmental and public health problems. The increasing demand for production with a significant reduction of synthetic fertilizers and pesticides use is a big challenge nowadays. The use of plant growth promoting rhizobacteria or PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. They play an important role to increase in soil fertility, plant growth promotion and suppression of phytopathogens for development of ecofriendly sustainable agriculture. In view of the latest advances in PGPR biotechnology, this paper proposes to do the review on PGPR in rhizosphere and describes the different mechanisms used by PGPR to promote the plants growth and health. In prospect to a healthy and sustainable agriculture, the PGPR approach revealed as one of the best ecofriendly alternatives.

2020 ◽  
Vol 35 (1-2) ◽  
Author(s):  
Tabish Akhtar ◽  
Shubham Kumar ◽  
Sukhdeo Kumar ◽  
M. R. Meena

The growth of plants promoting rhizobacteria (PGPR) has gained widespread importance in agriculture. These are beneficial bacteria found in nature that live actively in plant roots and improve plant growth and increase agricultural productivity.. (PGPR) promoting plant growth shows an important role in the sustainable agricultural industry. The increasing demand for crop production is a major challenge nowadays, with a significant lack of use of synthetic chemical fertilizers and pesticides. The use of PGPR has proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through direct or indirect mechanisms. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and dissolving nutrients for easy uptake by plants. Furthermore, PGPRs show synergistic and antagonistic interactions with microorganisms within the rhizosphere and in bulk soils, which indirectly increases plant growth rates. There are several bacteria species that act as PGPR. This review summarizes the methodology of PGPR as a bio-fertilizer in agriculture.


Author(s):  
Podduturi Vanamala ◽  
Uzma Sultana ◽  
Podduturi Sindhura ◽  
Mir Zahoor Gul

With a substantial decline in the use of synthetic chemicals, the growing demand for agricultural production is a critical concern in today's world. The use of plant growth-promoting rhizobacteria (PGPR) has been found to be an environmentally sound way of increasing agricultural productivity by promoting plant growth either through a direct or indirect mechanism. PGPRs are commonly occurring soil microbes that colonize the root system, which is an ideal location for interactions with plant microbes. PGPRs can provide an enticing way of reducing the use of toxic chemicals and can affect plant growth and development, either through releasing plant growth regulators or other bioactive stimulants and by taking up nutrients through fixation and mobilization, minimizing adverse effects of microbial pathogens on crops by using numerous mechanisms. In addition, they also play a significant role in soil fertility. This chapter aims to explore the diversified plant growth mechanisms that promote rhizobacteria in fostering crop yields and promoting sustainable agriculture.


Author(s):  
Md. Motaher Hossain ◽  
Farjana Sultana

Plant growth-promoting fungi (PGPF) constitute diverse genera of nonpathogenic fungi that provide a variety of benefits to their host plants. PGPF show an effective role in sustainable agriculture. Meeting increasing demand for crop production without damage to the environment is the biggest challenge nowadays. The use of PGPF has been recognized as an environmentally friendly way of increasing crop production. These fungi have proven to increase crop yields by improving germination, seedling vigor, plant growth, root morphogenesis, photosynthesis, and flowering through either a direct or indirect mechanism. The mechanisms of PGPF involve solubilizing and mineralizing nutrients for easy uptake by plants, regulating hormonal balance, producing volatile organic compounds and microbial enzyme, suppressing plant pathogens and ameliorating abiotic stresses. Successful colonization is an intrinsic factor for most PGPF to exert their beneficial effects on plants. A certain level of specificity exists in the interactions between plant species and PGPF for root colonization and growth promoting effects. There is a gap between the number of reported efficacious PGPF and the number of PGPF as biofertilizer. Efforts should be strengthened to improve the efficacy and commercialization of PGPF. Hence, this chapter summarizes valuable information regarding the application and mechanisms of PGPF in sustainable agriculture.


2021 ◽  
Vol 13 (19) ◽  
pp. 10986
Author(s):  
Hema Chandran ◽  
Mukesh Meena ◽  
Prashant Swapnil

Environmental stress is a major challenge for sustainable food production as it reduces yield by generating reactive oxygen species (ROS) which pose a threat to cell organelles and biomolecules such as proteins, DNA, enzymes, and others, leading to apoptosis. Plant growth-promoting rhizobacteria (PGPR) offers an eco-friendly and green alternative to synthetic agrochemicals and conventional agricultural practices in accomplishing sustainable agriculture by boosting growth and stress tolerance in plants. PGPR inhabit the rhizosphere of soil and exhibit positive interaction with plant roots. These organisms render multifaceted benefits to plants by several mechanisms such as the release of phytohormones, nitrogen fixation, solubilization of mineral phosphates, siderophore production for iron sequestration, protection against various pathogens, and stress. PGPR has the potential to curb the adverse effects of various stresses such as salinity, drought, heavy metals, floods, and other stresses on plants by inducing the production of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase. Genetically engineered PGPR strains play significant roles to alleviate the abiotic stress to improve crop productivity. Thus, the present review will focus on the impact of PGPR on stress resistance, plant growth promotion, and induction of antioxidant systems in plants.


Author(s):  
Habtamu Mekonnen ◽  
Mulugeta Kibret

AbstractVegetable production is an important economic activity and a major source of vitamins, minerals, and income in Ethiopia. However, the production of vegetables is much less developed than the production of food grains in the country. Vegetable production still needs improvement in combating biotic and abiotic threats with innovative technologies. Nowadays, excess use of chemical fertilizers to satisfy the increasing demand for food exerts deadly effects on soil microorganisms and contribute to the deterioration of soil fertility and an increase in atmospheric pollution. Several types of research are still going on to understand the diversity and importance of plant growth promoting rhizobacteria (PGPR) and their role in the betterment of vegetable production. PGPR facilitate plant growth directly by either assisting in the acquisition of nutrients (nitrogen, phosphorus, and other essential nutrients) or regulation of the levels of hormones. Indirectly PGPR decrease the inhibitory effects of various pathogens on vegetable growth and development in the forms of biocontrol agents. Some of the notable PGPR capable of facilitating the growth of vegetables such as potato, tomato, pepper, onion belong to genera of Pseudomonas, Bacillus, Azotobacter, Enterobacter, and Azospirillum. Hence, to optimize vegetable production with reduced input of mineral fertilizers and pesticides, the use of PGPR in vegetable cultivation is recommended.


Sign in / Sign up

Export Citation Format

Share Document