scholarly journals Patterns of introduced species interactions affect multiple aspects of network structure in plant–pollinator communities

Ecology ◽  
2014 ◽  
Vol 95 (10) ◽  
pp. 2953-2963 ◽  
Author(s):  
Laura Russo ◽  
Jane Memmott ◽  
Daniel Montoya ◽  
Katriona Shea ◽  
Yvonne M. Buckley
2020 ◽  
Author(s):  
Paul J. CaraDonna ◽  
Nickolas M. Waser

AbstractEcological communities consist of species that are joined in complex networks of interspecific interaction. The interactions that networks depict often form and dissolve rapidly, but this temporal variation is not well integrated into our understanding of the causes and consequences of network structure. If interspecific interactions exhibit temporal flexibility across time periods over which organisms co-occur, then the emergent structure of the corresponding network may also be temporally flexible, something that a temporally-static perspective would miss. Here, we use an empirical system to examine short-term flexibility in network structure (connectance, nestedness, and specialization), and in individual species interactions that contribute to that structure. We investigated weekly plant-pollinator networks in a subalpine ecosystem across three summer growing seasons. To link the interactions of individual species to properties of their networks, we examined weekly temporal variation in species’ contributions to network structure. As a test of the potential robustness of networks to perturbation, we also simulated the random loss of species from weekly networks. We then compared the properties of weekly networks to the properties of cumulative networks that aggregate field observations over each full season. A week-to-week view reveals considerable flexibility in the interactions of individual species and their contributions to network structure. For example, species that would be considered relatively generalized across their entire activity period may be much more specialized at certain times, and at no point as generalized as the cumulative network may suggest. Furthermore, a week-to-week view reveals corresponding temporal flexibility in network structure and potential robustness throughout each summer growing season. We conclude that short-term flexibility in species interactions leads to short-term variation in network properties, and that a season-long, cumulative perspective may miss important aspects of the way in which species interact, with implications for understanding their ecology, evolution, and conservation.


2019 ◽  
Author(s):  
Jean-Gabriel Young ◽  
Fernanda S. Valdovinos ◽  
M. E. J. Newman

Empirical measurements of ecological networks such as food webs and mutualistic networks are often rich in structure but also noisy and error-prone, particularly for rare species for which observations are sparse. Focusing on the case of plant–pollinator networks, we here describe a Bayesian statistical technique that allows us to make accurate estimates of network structure and ecological metrics from such noisy observational data. Our method yields not only estimates of these quantities, but also estimates of their statistical errors, paving the way for principled statistical analyses of ecological variables and outcomes. We demonstrate the use of the method with an application to previously published data on plant–pollinator networks in the Seychelles archipelago, calculating estimates of network structure, network nestedness, and other characteristics.


2018 ◽  
Vol 2 ◽  
pp. e25343
Author(s):  
José Augusto Salim ◽  
Antonio Saraiva ◽  
Kayna Agostini ◽  
Marina Wolowski ◽  
Allan Veiga ◽  
...  

The Brazilian Plant-Pollinator Interactions Network*1 (REBIPP) aims to develop scientific and teaching activities in plant-pollinator interaction. The main goals of the network are to: generate a diagnosis of plant-pollinator interactions in Brazil; integrate knowledge in pollination of natural, agricultural, urban and restored areas; identify knowledge gaps; support public policy guidelines aimed at the conservation of biodiversity and ecosystem services for pollination and food production; and encourage collaborative studies among REBIPP participants. To achieve these goals the group has resumed and built on previous works in data standard definition done under the auspices of the IABIN-PTN (Etienne Américo et al. 2007) and FAO (Saraiva et al. 2010) projects (Saraiva et al. 2017). The ultimate goal is to standardize the ways data on plant-pollinator interactions are digitized, to facilitate data sharing and aggregation. A database will be built with standardized data from Brazilian researchers members of the network to be used by the national community, and to allow sharing data with data aggregators. To achieve those goals three task groups of specialists with similar interests and background (e.g botanists, zoologists, pollination biologists) have been created. Each group is working on the definition of the terms to describe plants, pollinators and their interactions. The glossary created explains their meaning, trying to map the suggested terms into Darwin Core (DwC) terms, and following the TDWG Standards Documentation Standard*2 in definition. Reaching a consensus on terms and their meaning among members of each group is challenging, since researchers have different views and concerns about which data are important to be included into a standard. That reflects the variety of research questions that underlie different projects and the data they collect. Thus, we ended up having a long list of terms, many of them useful only in very specialized research protocols and experiments, sometimes rarely collected or measured. Nevertheless we opted to maintain a very comprehensive set of terms, so that a large number of researchers feel that the standard meets their needs and that the databases based on it are a suitable place to store their data, thus encouraging the adoption of the data standard. An update of the work will soon be available at REBIPP website and will be open for comments and contributions. This proposal of a data standard is also being discussed within the TDWG Biological Interaction Data Interest Group*3 in order to propose an international standard for species interaction data. The importance of interaction data for guiding conservation practices and ecosystem services provision management has led to the proposal of defining Essential Biodiversity Variables (EBVs) related to biological interactions. Essential Biodiversity Variables (Pereira et al. 2013) were developed to identify key measurements that are required to monitoring biodiversity change. EBVs act as intermediate abstract layer between primary observations (raw data) and indicators (Niemeijer 2002). Five EBV classes have been defined in an initial stage: genetic composition, species populations, species traits, community composition, ecosystem function and ecosystem structure. Each EBV class defines a list of candidate EBVs for biodiversity change monitoring (Fig. 1). Consequently, digitalization of such data and making them available online are essential. Differences in sampling protocols may affect data scalability across space and time, hence imposing barriers to the full use of primary data and EBVs calculation (Henry et al. 2008). Thus, common protocols and methods should be adopted as the most straightforward approach to promote integration of collected data and to allow calculation of EBVs (Jürgens et al. 2011). Recently a Workshop was held by GLOBIS B*4 (GLOBal Infrastructures for Supporting Biodiversity research) to discuss Species Interactions EBVs (February, 26-28, Bari, Italy). Plant-pollinator interactions deserved a lot of attention and REBIPP's work was presented there. As an outcome we expect to define specific EBVs for interactions, and use plant-pollinators as an example, considering pairwise interactions as well as interaction network related variables. The terms in the plant-pollinator data standard under discussion at REBIPP will provide information not only on EBV related with interactions, but also on other four EBV classes: species populations, species traits, community composition, ecosystem function and ecosystem structure. As we said, some EBVs for specific ecosystem functions (e.g. pollination) lay beyond interactions network structures. The EBV 'Species interactions' (EBV class 'Community composition') should incorporate other aspects such as frequency (Vázquez et al. 2005), duration and empirical estimates of interaction strengths (Berlow et al. 2004). Overall, we think the proposed plant-pollinator interaction data standard which is currently being developed by REBIPP will contribute to data aggregation, filling many data gaps and can also provide indicators for long-term monitoring, being an essential source of data for EBVs.


2021 ◽  
Vol 118 (12) ◽  
pp. e2023872118
Author(s):  
Ignasi Bartomeus ◽  
Serguei Saavedra ◽  
Rudolf P. Rohr ◽  
Oscar Godoy

Ecological theory predicts that species interactions embedded in multitrophic networks shape the opportunities for species to persist. However, the lack of experimental support of this prediction has limited our understanding of how species interactions occurring within and across trophic levels simultaneously regulate the maintenance of biodiversity. Here, we integrate a mathematical approach and detailed experiments in plant–pollinator communities to demonstrate the need to jointly account for species interactions within and across trophic levels when estimating the ability of species to persist. Within the plant trophic level, we show that the persistence probability of plant species increases when introducing the effects of plant–pollinator interactions. Across trophic levels, we show that the persistence probabilities of both plants and pollinators exhibit idiosyncratic changes when experimentally manipulating the multitrophic structure. Importantly, these idiosyncratic effects are not recovered by traditional simulations. Our work provides tractable experimental and theoretical platforms upon which it is possible to investigate the multitrophic factors affecting species persistence in ecological communities.


Author(s):  
Patricia Landaverde-González ◽  
Eunice Enríquez ◽  
Juan Núñez-Farfán

AbstractIn recent years, evidence has been found that plant-pollinator interactions are altered by land-use and that genetic diversity also plays a role. However, how land-use and genetic diversity influence plant–pollinator interactions, particularly in the Neotropics, where many endemic plants exist is still an open question. Cucurbita pepo is a monoecious plant and traditional crop wide distributed, with high rates of molecular evolution, landraces associated with human cultural management and a history of coevolution with bees, which makes this species a promising model for studying the effect of landscape and genetic diversity on plant-pollinator interactions. Here, we assess (1) whether female and male flowers differences have an effect on the interaction network, (2) how C. pepo genetic diversity affects flower-bee visitation network structure, and (3) what is the effect that land-use, accounting for C. pepo genetic variability, has on pumpkin-bee interaction network structure. Our results indicate that female and male flowers presented the same pollinator community composition and interaction network structure suggesting that female/male differences do not have a significant effect on network evolution. Genetic diversity has a positive effect on modularity, nestedness and number of interactions. Further, the effect of semi-natural areas on nestedness could be buffered when genetic diversity is high. Our results suggest that considering genetic diversity is relevant for a better understanding of the effect of land-use on interaction networks. Additionally, this understanding has great value in conserving biodiversity and enhancing the stability of interaction networks in a world facing great challenges of habitat and diversity loss.


2018 ◽  
Vol 44 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Lucy G. Johanson ◽  
Ary A. Hoffmann ◽  
Ken L. Walker ◽  
Michael A. Nash

Science ◽  
2019 ◽  
Vol 364 (6435) ◽  
pp. 78-82 ◽  
Author(s):  
Jeferson Vizentin-Bugoni ◽  
Corey E. Tarwater ◽  
Jeffrey T. Foster ◽  
Donald R. Drake ◽  
Jason M. Gleditsch ◽  
...  

Increasing rates of human-caused species invasions and extinctions may reshape communities and modify the structure, dynamics, and stability of species interactions. To investigate how such changes affect communities, we performed multiscale analyses of seed dispersal networks on Oʻahu, Hawaiʻi. Networks consisted exclusively of novel interactions, were largely dominated by introduced species, and exhibited specialized and modular structure at local and regional scales, despite high interaction dissimilarity across communities. Furthermore, the structure and stability of the novel networks were similar to native-dominated communities worldwide. Our findings suggest that shared evolutionary history is not a necessary process for the emergence of complex network structure, and interaction patterns may be highly conserved, regardless of species identity and environment. Introduced species can quickly become well integrated into novel networks, making restoration of native ecosystems more challenging than previously thought.


2014 ◽  
Vol 281 (1780) ◽  
pp. 20132397 ◽  
Author(s):  
Jeferson Vizentin-Bugoni ◽  
Pietro Kiyoshi Maruyama ◽  
Marlies Sazima

Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird–plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought.


Sign in / Sign up

Export Citation Format

Share Document