scholarly journals Brazilian Network on Plant-Pollinator Interactions: an update on the initiative of a standard for plant-pollinator interactions data

2018 ◽  
Vol 2 ◽  
pp. e25343
Author(s):  
José Augusto Salim ◽  
Antonio Saraiva ◽  
Kayna Agostini ◽  
Marina Wolowski ◽  
Allan Veiga ◽  
...  

The Brazilian Plant-Pollinator Interactions Network*1 (REBIPP) aims to develop scientific and teaching activities in plant-pollinator interaction. The main goals of the network are to: generate a diagnosis of plant-pollinator interactions in Brazil; integrate knowledge in pollination of natural, agricultural, urban and restored areas; identify knowledge gaps; support public policy guidelines aimed at the conservation of biodiversity and ecosystem services for pollination and food production; and encourage collaborative studies among REBIPP participants. To achieve these goals the group has resumed and built on previous works in data standard definition done under the auspices of the IABIN-PTN (Etienne Américo et al. 2007) and FAO (Saraiva et al. 2010) projects (Saraiva et al. 2017). The ultimate goal is to standardize the ways data on plant-pollinator interactions are digitized, to facilitate data sharing and aggregation. A database will be built with standardized data from Brazilian researchers members of the network to be used by the national community, and to allow sharing data with data aggregators. To achieve those goals three task groups of specialists with similar interests and background (e.g botanists, zoologists, pollination biologists) have been created. Each group is working on the definition of the terms to describe plants, pollinators and their interactions. The glossary created explains their meaning, trying to map the suggested terms into Darwin Core (DwC) terms, and following the TDWG Standards Documentation Standard*2 in definition. Reaching a consensus on terms and their meaning among members of each group is challenging, since researchers have different views and concerns about which data are important to be included into a standard. That reflects the variety of research questions that underlie different projects and the data they collect. Thus, we ended up having a long list of terms, many of them useful only in very specialized research protocols and experiments, sometimes rarely collected or measured. Nevertheless we opted to maintain a very comprehensive set of terms, so that a large number of researchers feel that the standard meets their needs and that the databases based on it are a suitable place to store their data, thus encouraging the adoption of the data standard. An update of the work will soon be available at REBIPP website and will be open for comments and contributions. This proposal of a data standard is also being discussed within the TDWG Biological Interaction Data Interest Group*3 in order to propose an international standard for species interaction data. The importance of interaction data for guiding conservation practices and ecosystem services provision management has led to the proposal of defining Essential Biodiversity Variables (EBVs) related to biological interactions. Essential Biodiversity Variables (Pereira et al. 2013) were developed to identify key measurements that are required to monitoring biodiversity change. EBVs act as intermediate abstract layer between primary observations (raw data) and indicators (Niemeijer 2002). Five EBV classes have been defined in an initial stage: genetic composition, species populations, species traits, community composition, ecosystem function and ecosystem structure. Each EBV class defines a list of candidate EBVs for biodiversity change monitoring (Fig. 1). Consequently, digitalization of such data and making them available online are essential. Differences in sampling protocols may affect data scalability across space and time, hence imposing barriers to the full use of primary data and EBVs calculation (Henry et al. 2008). Thus, common protocols and methods should be adopted as the most straightforward approach to promote integration of collected data and to allow calculation of EBVs (Jürgens et al. 2011). Recently a Workshop was held by GLOBIS B*4 (GLOBal Infrastructures for Supporting Biodiversity research) to discuss Species Interactions EBVs (February, 26-28, Bari, Italy). Plant-pollinator interactions deserved a lot of attention and REBIPP's work was presented there. As an outcome we expect to define specific EBVs for interactions, and use plant-pollinators as an example, considering pairwise interactions as well as interaction network related variables. The terms in the plant-pollinator data standard under discussion at REBIPP will provide information not only on EBV related with interactions, but also on other four EBV classes: species populations, species traits, community composition, ecosystem function and ecosystem structure. As we said, some EBVs for specific ecosystem functions (e.g. pollination) lay beyond interactions network structures. The EBV 'Species interactions' (EBV class 'Community composition') should incorporate other aspects such as frequency (Vázquez et al. 2005), duration and empirical estimates of interaction strengths (Berlow et al. 2004). Overall, we think the proposed plant-pollinator interaction data standard which is currently being developed by REBIPP will contribute to data aggregation, filling many data gaps and can also provide indicators for long-term monitoring, being an essential source of data for EBVs.

2019 ◽  
Author(s):  
E. Fernando Cagua ◽  
Audrey Lustig ◽  
Jason M. Tylianakis ◽  
Daniel B. Stouffer

AbstractWhat determines whether or not a species is a generalist or a specialist? Evidence that the environment can influence species interactions is rapidly accumulating. However, a systematic link between environment and the number of partners a species interacts with has been elusive so far. Presumably, because environmental gradients appear to have contrasting effects on species depending on the environmental variable. Here, we test for a relationship between the stresses imposed by the environment, instead of environmental gradients directly, and species specialisation using a global dataset of plant-pollinator interactions. We found that the environment can play a significant effect on specialisation, even when accounting for community composition, likely by interacting with species’ traits and evolutionary history. Species that have a large number of interactions are more likely to focus on a smaller number of, presumably higher-quality, interactions under stressful environmental conditions. Contrastingly, the specialists present in multiple locations are more likely to broaden their niche, presumably engaging in opportunistic interactions to cope with increased environmental stress. Indeed, many apparent specialists effectively behave as facultative generalists. Overall, many of the species we analysed are not inherently generalist or specialist. Instead, species’ level of specialisation should be considered on a relative scale depending on where they are found and the environmental conditions at that location.


2021 ◽  
Author(s):  
Joris Timmermans ◽  
Daniel Kissling

<p>Biodiversity is rapidly declining and monitoring biodiversity change is thus of key importance to prevent the destabilization of ecosystems and their services. A key component of monitoring biodiversity change is the development of Essential Biodiversity Variables (EBVs) which facilitate the harmonization and standardization of raw data from disparate sources. In this context, consistent and adequate geospatial information needs to be available to ecologists and policymakers around the world, even for countries in which comprehensive in-situ biodiversity measurements cannot be taken on a regular basis. Satellite remote sensing (SRS) currently represents the only tool which allows to acquiree spatially contiguous and temporally replicated observations for monitoring biodiversity over continental or (near-)global spatial extents. Observations from SRS already provide a wealth of information on the distribution, structure and functioning of ecosystems, but user requirements of ecologists and policymakers have not been systematically quantified for allowing the development of roadmaps by SRS experts.</p><p>In response, we performed a top-down user requirement analysis combined with a bottom-up technical review to highlight (i) how currently available remote sensing products can contribute to biodiversity monitoring, and (ii) which immature SRS products could be prioritized for further development. We performed a systematic review of the Post2020 goals (for 2050) and biodiversity targets (for 2030) of the Convention on Biological Diversity (CBD) and their corresponding biodiversity indicators. Subsequently we evaluated SRS products according to relevance (to biodiversity indicators), (im)maturity, feasibility, and suitability for provisioning user-adequate spatio-temporal information. We found that currently existing CBD-relevant biodiversity indicators mainly use EBV-related information on ecosystem structure and distribution (e.g. available from remote sensing products of landcover and Leaf Area Index, LAI) or on species populations (predominantly acquired from in-situ biodiversity measurements because current SRS products are too limited in the spatio-temporal resolutions of their sensors). Moreover, only few biodiversity indicators derived from SRS currently focus on species traits or community composition EBVs, as both the identification of individual species and the quantification of species traits such as LAI and foliar nitrogen, phosphorus, kalium and chlorophyll content remain challenging. We outline how further advances in data-science techniques (e.g. merging SRS observations of high spectral and high spatial resolution) provide tremendous opportunities for advancing community composition and species-focused EBVs for global biodiversity monitoring.</p>


2018 ◽  
Vol 2 ◽  
pp. e25409
Author(s):  
Quentin Groom ◽  
Robert Guralnick ◽  
W. Daniel Kissling

Can Essential Biodiversity Variables (EBVs) be developed to monitor changes in species interactions? That was the difficult question asked at the GLOBIS-B workshop in February, 2017 in which >50 experts participated. EBVs can be defined as harmonized measurements that allow us to inform policy about essential changes in biodiversity. They can be seen as biological state variables from which more refined indicators may be derived. They have been presented as a means to monitor global biodiversity change and as a concept to drive the gathering, sharing, and standardisation of data on our biota (Geijzendorffer et al. 2015, Kissling et al. 2017, Pereira et al. 2013). There are different classes of EBVs that characterize, for example, the state of species populations, species traits and ecosystem structure and function. It has also been proposed that there should be EBVs related to species interactions. However, until now there has been little progress formulating what these should be, even though species interactions are central to ecology. Species interactions cover a wide range of important processes, from mutualisms, such as pollination, to different forms of heterotrophic nutrition, such as the predator-prey relationship. Indeed, ecological interactions are critical to understand why an ecosystem is more than the sum of its parts. Nevertheless, direct observation of species interactions is often difficult and time consuming work, which makes it difficult to monitor them in the long-term. For this reason the workshop focused on those species interactions that are feasible to study and are most relevant to policy. To bring focus to our discussions we concentrated on pollination, predation and microbial interactions. Taking pollination as an example, there was recognition of the importance of ecological networks and that network metrics may be a sensitive indicator of change. Potential EBVs might be the number of pairwise interactions between species or the modularity and interaction diversity of the whole network. This requires standardised data collection and reporting (e.g. standardization of measures of interaction strength or minimum data specifications for ecological networks) and sufficient data across time to regularly calculate these metrics. Other simpler surrogates for pollination might also prove useful, such as flower visitation rates or the proportion of fruit set. Finally, there was a recognition that we do not yet have enough tools to monitor some important interactions. Many interactions, particular among microbes, can currently only be inferred from the co-occurrence of taxa. However, technology is rapidly developing and it is possible to foresee a future where even these interactions can be monitored efficiently. Species interactions are essential to understanding ecology, but they are also difficult to monitor. Yet, delegates at the workshop left with a positive outlook that it is valuable to develop standardisation and harmonization of species interaction data to make them suitable for EBV production.


Author(s):  
Nao Takashina

Species interactions characterize population dynamics and ecosystem structure. While the population-level discussion is common in many ecological studies, trait variations within a population and ontogenetic diet/trophic niche shift are prevail across taxa. The ontogenetic development may lead to an individual’s role shift, such as inferior/superior competitor, prey, or predator. Here, we develop a novel mathematical framework to bridge multiple levels of population dynamics, such as trait, role, and population-level. We start with a nonlinear trait-level model, and derive role-level and population-level dynamics. By utilizing the connections, we demonstrate that the population-level model predicts the equilibrium status of the role-level model. In the role-level model, we discuss multiple role-shift scenarios: from (i) inferior/superior competitor to superior/inferior competitor, (ii) competitor to predator, and (iii) prey to predator. Our approach connects traits, roles, and population dynamics consistently, thus offering an opportunity to discuss the effect of species traits in the population-level dynamics.


Author(s):  
José Augusto Salim ◽  
Paula Zermoglio ◽  
Debora Drucker ◽  
Filipi Soares ◽  
Antonio Saraiva ◽  
...  

Human demands on resources such as food and energy are increasing through time while global challenges such as climate change and biodiversity loss are becoming more complex to overcome, as well as more widely acknowledged by societies and governments. Reports from initiatives like the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) have demanded quick and reliable access to high-quality spatial and temporal data of species occurrences, their interspecific relations and the effects of the environment on biotic interactions. Mapping species interactions is crucial to understanding and conserving ecosystem functioning and all the services it can provide (Tylianakis et al. 2010, Slade et al. 2017). Detailed data has the potential to improve our knowledge about ecological and evolutionary processes guided by interspecific interactions, as well as to assist in planning and decision making for biodiversity conservation and restoration (Menz et al. 2011). Although a great effort has been made to successfully standardize and aggregate species occurrence data, a formal standard to support biotic interaction data sharing and interoperability is still lacking. There are different biological interactions that can be studied, such as predator-prey, host-parasite and pollinator-plant and there is a variety of data practices and data representation procedures that can be used. Plant-pollinator interactions are recognized in many sources from the scientific literature (Abrol 2012, Ollerton 2021) for the importance of ecosystem functioning and sustainable agriculture. Primary data about pollination are becoming increasingly available online and can be accessed from a great number of data repositories. While a vast quantity of data on interactions, and on pollination in particular, is available, data are not integrated among sources, largely because of a lack of appropriate standards. We present a vocabulary of terms for sharing plant-pollinator interactions using one of the existing extensions to the Darwin Core standard (Wieczorek et al. 2012). In particular, the vocabulary is meant to be used for the term measurementType of the Extended Measurement Or Facts extension. The vocabulary was developed by a community of specialists in pollination biology and information science, including members of the TDWG Biological Interaction Data Interest Group, during almost four years of collaborative work. The vocabulary introduces 40 new terms, comprising many aspects of plant-pollinator interactions, and can be used to capture information produced by studies with different approaches and scales. The plant-pollinator interactions vocabulary is mainly a set of terms that can be both understood by people or interpreted by machines. The plant-pollinator vocabulary is composed of a defining a set of terms and descriptive documents explaining how the vocabulary is to be used. The terms in the vocabulary are divided into six categories: Animal, Plants, Flower, Interaction, Reproductive Success and Nectar Dynamics. The categories are not formally part of the vocabulary, they are used only to organize the vocabulary and to facilitate understanding by humans. We expect that the plant-pollinator vocabulary will contribute to data aggregation from a variety of sources worldwide at higher levels than we have experienced, significantly amplify plant-pollinator data availability for global synthesis, and contribute to knowledge in conservation and sustainable use of biodiversity.


Author(s):  
Juan Miguel González-Aranda ◽  
Dimitrios Koureas ◽  
Wouter Addink ◽  
Tim Hirsch ◽  
Christos Arvanitidis ◽  
...  

The collaboration between LifeWatch ERIC and DiSSCo (Distributed System of Scientific Collections), both pan-European research infrastructures focusing on biodiversity, can be achieved in a number of ways. The direct initiation of this collaboration can be carried out through their joint support to GBIF (Global Biodiversity Information Facility). This approach will facilitate meeting GBIF’s overall objective stated as: “Connecting data and expertise: a new alliance for biodiversity knowledge” (Hobern and Miller 2019). LifeWatch ERIC supports GBIF in a collaborative way by integrating and providing e-Services according to Global Biodiversity Informatics Outlook (GBIO) Framework objectives (Fig. 1), particularly suitable for the Understanding focus area. This concentrates on building modeled representations of biodiversity patterns and properties, based on any possible evidence, using the following components: Multiscale species modelling; Trends and predictions; Modelling biological systems; Visualization and dissemination; Prioritizing new data capture. Multiscale species modelling; Trends and predictions; Modelling biological systems; Visualization and dissemination; Prioritizing new data capture. In this regard, and during the 2nd Global Biodiversity Information Conference, LifeWatch ERIC actively participated in one of the four parallel working groups reviewing different components from the GBIO framework. Each component was selected to capture information on a broad range of different challenges and opportunities. At the same event, DiSSCo mainly focused on the Data layer, as the main provider of data and other types of collections resources in Europe. The Evidence layer is the fertile interface to develop sound synergies for collaboration by both research infrastructures in order to support GBIF through the development of 3 concrete activities: Participation in the co-design, development and deployment of a multi-purpose Virtual Research Environment (VRE) to support DiSSCo, specifically by integrating the collections e-Services and by engaging the various communities of practice; Participation in the co-design and co-implementation of relevant e-Services in LifeBlock (LifeWatch ERIC blockchain-based technology platform); The active participation of DiSSCo for integrating collections data: DiSSCo is one of the main resources needed for the integration of GLOBIS-B GLOBal Infrastructures for Supporting Biodiversity work on Essential Biodiversity Variables (EBVs) (Kissling et al. 2018). Thus, EBVs together with species traits will be integrated into LifeBlock platform in order to feed Ecosystem Services needed to further support Biodiversity Ecosystem Services VRE provided by LifeWatch ERIC distributed e-Infrastructure. Participation in the co-design, development and deployment of a multi-purpose Virtual Research Environment (VRE) to support DiSSCo, specifically by integrating the collections e-Services and by engaging the various communities of practice; Participation in the co-design and co-implementation of relevant e-Services in LifeBlock (LifeWatch ERIC blockchain-based technology platform); The active participation of DiSSCo for integrating collections data: DiSSCo is one of the main resources needed for the integration of GLOBIS-B GLOBal Infrastructures for Supporting Biodiversity work on Essential Biodiversity Variables (EBVs) (Kissling et al. 2018). Thus, EBVs together with species traits will be integrated into LifeBlock platform in order to feed Ecosystem Services needed to further support Biodiversity Ecosystem Services VRE provided by LifeWatch ERIC distributed e-Infrastructure.


2020 ◽  
Author(s):  
Beth M. L. Morrison ◽  
Berry J. Brosi ◽  
Rodolfo Dirzo

AbstractDetermining linkage rules that govern the formation of species interactions is a critical goal of ecologists, especially considering that biodiversity, species interactions, and the ecosystem processes they maintain are changing at rapid rate worldwide. Species traits and abundance play a role in determining plant-pollinator interactions, but we illustrate here that linkage rules of plant-pollinator interactions change with disturbance context, switching from predominantly trait-based linkage rules in undisturbed, natural habitats, to abundance-based linkage rules in intensive agricultural habitats. The transition from trait-based to abundance-based linkage rules corresponds with a decline in floral trait diversity and an increase in opportunistic interaction behavior as agricultural intensification increases. These findings suggest that agricultural intensification is changing the very rules determining the realization of interactions and the formation of communities, making it challenging to use the structure of undisturbed systems to predict interactions within disturbed communities.


Author(s):  
Mark Vellend

This chapter highlights the scale dependence of biodiversity change over time and its consequences for arguments about the instrumental value of biodiversity. While biodiversity is in decline on a global scale, the temporal trends on regional and local scales include cases of biodiversity increase, no change, and decline. Environmental change, anthropogenic or otherwise, causes both local extirpation and colonization of species, and thus turnover in species composition, but not necessarily declines in biodiversity. In some situations, such as plants at the regional scale, human-mediated colonizations have greatly outnumbered extinctions, thus causing a marked increase in species richness. Since the potential influence of biodiversity on ecosystem function and services is mediated to a large degree by local or neighborhood species interactions, these results challenge the generality of the argument that biodiversity loss is putting at risk the ecosystem service benefits people receive from nature.


2018 ◽  
Vol 5 (4) ◽  
pp. 171503 ◽  
Author(s):  
Amanda M. Koltz ◽  
Niels M. Schmidt ◽  
Toke T. Høye

The Arctic is experiencing some of the fastest rates of warming on the planet. Although many studies have documented responses to such warming by individual species, the idiosyncratic nature of these findings has prevented us from extrapolating them to community-level predictions. Here, we leverage the availability of a long-term dataset from Zackenberg, Greenland (593 700 specimens collected between 1996 and 2014), to investigate how climate parameters influence the abundance of different arthropod groups and overall community composition. We find that variation in mean seasonal temperatures, winter duration and winter freeze–thaw events is correlated with taxon-specific and habitat-dependent changes in arthropod abundances. In addition, we find that arthropod communities have exhibited compositional changes consistent with the expected effects of recent shifts towards warmer active seasons and fewer freeze–thaw events in NE Greenland. Changes in community composition are up to five times more extreme in drier than wet habitats, with herbivores and parasitoids generally increasing in abundance, while the opposite is true for surface detritivores. These results suggest that species interactions and food web dynamics are changing in the Arctic, with potential implications for key ecosystem processes such as decomposition, nutrient cycling and primary productivity.


Sign in / Sign up

Export Citation Format

Share Document