scholarly journals Analysis of the implementation of telematic tools for data management of passenger traffic dynamics in the Bus Rapid Transit system

2018 ◽  
Vol 28 (49) ◽  
pp. 49-56
Author(s):  
Veniamin Nikolayevich Bogumil ◽  
Aleksandr Aleksandrovich Kudryavcev ◽  
María José Duque-Sarango

This article briefly describes the transport system of the Republic of Ecuador and, in particular, the organization of the route network of urban passenger transport in Quito, the capital city of Ecuador. The features of the organization and management of transportation of passengers on the main routes of urban passenger transport of Quito are determined by the Bus Rapid Transit (BRT) system. We revise possible ways of improving the management and control of urban passenger transport in Quito by using telematics tools and systems. We propose that the main direction of improvement is to introduce tools for assessing the dynamics of passenger traffic in real time through the use of telematics. In comparison with traditional systems, the peculiarity of the approach proposed is the use of telematics equipment and special sensors for calculating the number of incoming/outgoing passengers from the vehicle, which are installed directly in the doors of the pavilions of the bus stops of the BRT system routes. The goal of this approach is to reduce the cost of telematics equipment and normalize the occupancy inside transport vehicles, which is one of the service level indicators.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Jiaqing Wu ◽  
Rui Song ◽  
Youan Wang ◽  
Feng Chen ◽  
Shubin Li

The coordination between bus rapid transit (BRT) and feeder bus service is helpful in improving the operational efficiency and service level of urban public transport system. Therefore, a coordinated operation model of BRT and bus is intended to develop in this paper. The total costs are formulated and optimized by genetic algorithm. Moreover, the skip-stop BRT operation is considered when building the coordinated operation model. A case of the existing bus network in Beijing is studied, the proposed coordinated operation model of BRT and bus is applied, and the optimized headway and costs are obtained. The results show that the coordinated operation model could effectively decrease the total costs of the transit system and the transfer time of passengers. The results also suggest that the coordination between the skip-stop BRT and bus during peak hour is more effective than non-coordination operation.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Min Yang ◽  
Wei Wang ◽  
Bo Wang ◽  
Jing Han

Bus rapid transit (BRT) has a great potential to improve the service level of transit system and has been implemented in many Chinese cities. However, the priority it can provide to buses has not been explored fully. Therefore, this study mainly investigated two advanced control strategies (signal priority using advanced detection and transit speed control). Signal priority using advanced detection is a strategy which detects one cycle ahead of buses’ arrival in order to adapt a more flexible control algorithm to provide signal priority for buses. Another is transit speed control, which provides priority at intersections for buses by controlling the speed of them and predicting their arrival at certain intersection. These two advanced strategies were modeled and evaluated using simulation software VISSIM and presented better performance than other three scenarios (base case, exclusive bus lane, and conventional transit signal priority). Only the eastbound direction would be researched as its traffic flow and bus volume are much larger than those of the other direction. Data used in this model was collected in Yingtan City. It is also shown that both the operation of BRT and the efficiency of private traffic can be much improved by applying the two strategies proposed above.


2016 ◽  
Vol 6 (3) ◽  
pp. 123-134 ◽  
Author(s):  
Yohen Cuéllar ◽  
Rodrigo Buitrago Tello ◽  
Luis Carlos Belalcazar Ceronn

2021 ◽  
Vol 13 (8) ◽  
pp. 4437
Author(s):  
Sitti Asmah Hassan ◽  
Intan Nurfauzirah Shafiqah Hamzani ◽  
Abd. Ramzi Sabli ◽  
Nur Sabahiah Abdul Sukor

Bus rapid transit (BRT) is one of the strategies to promote improvements in urban mobility. In this study, BRT scenarios, which integrate exclusive bus lanes and bus priority signal control in mixed traffic scenarios, were modelled using a VISSIM microsimulation. Three scenarios of BRT were modelled to represent 16:84, 38:62 and 54:46 modal splits between public transport and private vehicles. It was found that Scenario 4 (the 54:46 scenario) offers better benefits in terms of delay time saving and economic benefits. In general, it was found that the BRT system enhances the functioning of the transport system and provides people with faster and better mobility facilities, resulting in attractive social and economic benefits, especially on a higher modal split of public transport. It is regarded as one strategy to alleviate traffic congestion and reduce dependency on private vehicles. The finding of this study provides an insight on the effective concept of the BRT system, which may promote the dissemination of an urban mobility solution in the city. The results can help policymakers and local authorities in the management of a transport network in order to ensure reliable and sustainable transport.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Wu Lan ◽  
Chen Xuewu ◽  
Lu Tao

Different configurations of Bus Rapid Transit (BRT) system may cause different additional riderships. In this paper, in terms of network traffic equilibrium assignment principle, the additional riderships estimation model based on Variational Inequality (VI) model is presented. The bus frequency is related to variables including the travel time, the residence time in terminals, and the dwelling time at the stops. The additional riderships are translated into network additional traffic flow firstly. Given the bus frequency, VI model can be turned into Stochastic User Equilibrium (SUE) model to calculate the other variables. The similarity diagonalization method is used to calculate the elastic bus frequency and finally the network additional traffic flow can be computed. The additional riderships under different configurations of BRT system are compared in the numerical test. The results show that the additional riderships under different configurations have large differences and occupy a high percentage of the total ridership.


2004 ◽  
Vol 24 (5) ◽  
pp. 587-610 ◽  
Author(s):  
DANIEL A. RODRÍGUEZ* * ◽  
FELIPE TARGA

Sign in / Sign up

Export Citation Format

Share Document