scholarly journals Assessing the Use of a Surface Washing Agent for Treating Oil Spills in Canada’s Freshwater Environments

Author(s):  
Vince P Palace
2003 ◽  
Vol 2003 (1) ◽  
pp. 319-325 ◽  
Author(s):  
Darrell R. Robertson ◽  
Jason H. Maddox

ABSTRACT Although opportunities exist to use shoreline surface washing agents for oil spill removal in freshwater environments, this response technique is seldom tried because little is known about its insitu effectiveness and toxicity. In January 2000, the Federal Region V Regional Response Team chartered a Subcommittee of international, federal, state and industry representatives to develop a protocol for evaluating the test use of shoreline surface washing agents in freshwater environments on oil spills of opportunity in the Great Lakes Region. Currently, mechanical and manual recovery are the primary means of oil spill cleanup in freshwater environments which can be costly, labor intensive, and often results in limited oil recovery. Oil recovery inefficiency is related to shoreline composition and complexity that allow oil to cover, fill, and penetrate the substrate. Responders, with limited options, may compromise their efforts by leaving residual oil in the environment or expend a substantial effort sanitizing the shoreline, which can be more detrimental to the environment. The application of shoreline surface washing agents may improve recovery efficiency and ameliorate long term harm to freshwater shorelines if properly applied. Surface washing agents may also reduce labor requirements typically associated with diminishing returns from continued mechanical or manual cleanups required to achieve similar oil removal results. The RRT V Subcommittee developed a protocol for conducting small-scale insitu tests on the effectiveness and toxicity of surface washing agents to gain experience and confidence in its utility as a response tool in freshwater environments. The resulting protocol guides the user in assessing physical criteria, constraints and special considerations needed to determine if the use of two surface washing agents is appropriate. The protocol also includes procedures for test preparation and application and provides effectiveness, water quality and toxicity monitoring guidelines, data collection, booming, and oil recovery procedures.


2020 ◽  
Vol 77 (5) ◽  
pp. 779-788 ◽  
Author(s):  
Jeffrey Cederwall ◽  
Tyler A. Black ◽  
Jules M. Blais ◽  
Mark L. Hanson ◽  
Bruce P. Hollebone ◽  
...  

Heavy crude oil transportation over land is increasing, yet the ecological impacts of spills, particularly of diluted bitumen, in freshwater environments remain poorly understood. We simulated spills of diluted bitumen in 1400 L land-based mesocosms containing water and sediments from a boreal, oligotrophic lake and monitored the response of natural planktonic communities over 11 days. Most species of phytoplankton (chrysophytes and dinoflagellates) and zooplankton (copepods and cladocerans) were sensitive to oil, exhibiting >70% overall abundance reductions in response to the spills. Declines in nano- and microphytoplankton were short-lived and began to recover after the oil sank, whereas picophytoplankton and zooplankton populations remained depressed at the end of the experiment. In contrast, oil spills stimulated bacteria known to degrade hydrocarbons, especially Alphaproteobacteria, whereas Gammaprotobacteria (a common marine oil spill bacterial class) increased less. This is the first experiment to examine the effects of diluted bitumen in a multitrophic freshwater community.


1989 ◽  
Vol 4 ◽  
pp. 244-248 ◽  
Author(s):  
Donald L. Wolberg

The minerals pyrite and marcasite (broadly termed pyritic minerals) are iron sulfides that are common if not ubiquitous in sedimentary rocks, especially in association with organic materials (Berner, 1970). In most marine sedimentary associations, pyrite and marcasite are associated with organic sediments rich in dissolved sulfate and iron minerals. Because of the rapid consumption of sulfate in freshwater environments, however, pyrite formation is more restricted in nonmarine sediments (Berner, 1983). The origin of the sulfur in nonmarine environments must lie within pre-existing rocks or volcanic detritus; a relatively small, but significant contribution may derive from plant and animal decomposition products.


Nature ◽  
2008 ◽  
Author(s):  
Rachel Courtland
Keyword(s):  

Author(s):  
Yury Rubanov ◽  
Yury Rubanov ◽  
Yulia Tokach ◽  
Yulia Tokach ◽  
Marina Vasilenko ◽  
...  

There was suggested a method of obtaining a complex adsorbent with magnetic properties for the oil spill clean-up from the water surface by means of controlled magnetic field. As magnetic filler a finely-dispersed iron-ore concentrate in the form of magnetite, obtained by wet magnetic separation of crushed iron ore, was suggested. As an adsorbing component the disintegrating electric-furnace steelmaking slag, obtained by dry air-cooling method, was selected. The mass ratio of components slag:magnetite is 1(1,5÷2,0). For cleaning up emergency oil spills with the suggested magnetic adsorbent a facility, which is installed on a twin-hulled oil recovery vessel, was designed. The vessel contains a rectangular case between the vessel hulls with inlet and outlet for the treated water, the bottom of which is a permanently moving belt. Above the belt, at the end point of it there is an oil-gathering drum with magnetic system. The adsorbent is poured to oil-products layer from a hopper, provided with drum feeder. Due to the increased bulk weight the adsorbent sinks rapidly into the oil layer on the water surface. If the large non-floating flocculi are formed, they sink and sedimentate on the moving belt and are moved to the oil-gathering drum. The saturated adsorbent is removed from the drum surface with a scraper, connected with a gutter, with contains a rotating auger.


Author(s):  
Alexander Ermolov ◽  
Alexander Ermolov

International experience of oil spill response in the sea defines the priority of coastal protection and the need to identify as most valuable in ecological terms and the most vulnerable areas. Methodological approaches to the assessing the vulnerability of Arctic coasts to oil spills based on international systems of Environmental Sensitivity Index (ESI) and geomorphological zoning are considered in the article. The comprehensive environmental and geomorphological approach allowed us to form the morphodynamic basis for the classification of seacoasts and try to adapt the international system of indexes to the shores of the Kara Sea taking into account the specific natural conditions. This work has improved the expert assessments of the vulnerability and resilience of the seacoasts.


Sign in / Sign up

Export Citation Format

Share Document