scholarly journals Meta-Analysis of Computational Thinking Studies in Science Education: Descriptive Statistics

2021 ◽  
pp. 526-544
Author(s):  
Gülbin KIYICI ◽  
Havva YAMAK
Author(s):  
José Miguel Merino-Armero ◽  
José Antonio González-Calero ◽  
Ramón Cózar-Gutiérrez

1986 ◽  
Vol 20 (3) ◽  
pp. 384-385 ◽  
Author(s):  
A. F. Jorm

A meta-analysis of the literature on drug treatments for Alzheimer's disease revealed the following limitations in the dissemination of research findings: multiple publication of findings, failure to report basic descriptive statistics and failure to respond to written requests for additional information on the research. The possible reasons for these problems and remedies for them are discussed.


Author(s):  
Michael Lodi ◽  
Simone Martini

AbstractThe pervasiveness of Computer Science (CS) in today’s digital society and the extensive use of computational methods in other sciences call for its introduction in the school curriculum. Hence, Computer Science Education is becoming more and more relevant. In CS K-12 education, computational thinking (CT) is one of the abused buzzwords: different stakeholders (media, educators, politicians) give it different meanings, some more oriented to CS, others more linked to its interdisciplinary value. The expression was introduced by two leading researchers, Jeannette Wing (in 2006) and Seymour Papert (much early, in 1980), each of them stressing different aspects of a common theme. This paper will use a historical approach to review, discuss, and put in context these first two educational and epistemological approaches to CT. We will relate them to today’s context and evaluate what aspects are still relevant for CS K-12 education. Of the two, particular interest is devoted to “Papert’s CT,” which is the lesser-known and the lesser-studied. We will conclude that “Wing’s CT” and “Papert’s CT,” when correctly understood, are both relevant to today’s computer science education. From Wing, we should retain computer science’s centrality, CT being the (scientific and cultural) substratum of the technical competencies. Under this interpretation, CT is a lens and a set of categories for understanding the algorithmic fabric of today’s world. From Papert, we should retain the constructionist idea that only a social and affective involvement of students into the technical content will make programming an interdisciplinary tool for learning (also) other disciplines. We will also discuss the often quoted (and often unverified) claim that CT automatically “transfers” to other broad 21st century skills. Our analysis will be relevant for educators and scholars to recognize and avoid misconceptions and build on the two core roots of CT.


2018 ◽  
Vol 9 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Chien-Sing Lee ◽  
Kuok-Shoong Daniel Wong

Science, technology, engineering and mathematics (STEM) and the inclusion of art and design into STEM (STEAM) as a mediator are increasingly emphasized in innovation and entrepreneurial blueprints across countries due to smart cities. Knowledge creation/construction towards a thriving ecosystem however, is not a given. This exploratory study aims to derive design factors for community engagement and possible mashable opportunities/innovations in smart city communities. We present a meta-analysis of two gamified media-model maker opportunities carried out among Malaysian high school students. These are designed based on computational thinking and different design theories which take into account: a) deriving design factors/requirements (success factors) and barriers to gamified learning; b) mapping and intertwining of different models as genetic blueprint for gamified learning; c) refinement of the authors' socio-cognitive-HCI framework; d) possibilities for personalized inclusive design.


2021 ◽  
Vol 6 (3) ◽  
pp. 272-289
Author(s):  
Norhafizan Abdul Wahab ◽  
Othman Talib ◽  
Fazilah Razali ◽  
Nurzatulshima Kamarudin

Computational Thinking (CT) has been increasingly embraced as a reformation in STEM education. This paper discusses why the implementation of CT would have a considerable effect on STEM education. The first objective of this systematic literature review is to identify the subjects that incorporate the most elements of CT in STEM education. Secondly, it aims to provide an overview of CT practices in the classrooms. Finally, the major findings of this study seek to discuss the benefits and challenges of the use of CT in STEM education. Fifteen articles were methodically selected from Scopus, Web of Science, Dimensions, and Google Scholar databases as the relevant studies to be discussed in this systematic study, based on the PRISMA Statement (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) review technique. This review identifies current research gaps and directions for the practice and implementation of CT in STEM education. Further analysis of the articles has contributed to a conclusion that CT has become more widespread and multi-disciplinary and seems to have propagated improvements in STEM education. Still, a new study is required, especially on long-term implications.


10.28945/4327 ◽  
2019 ◽  

Aim/Purpose: Science is becoming a computational endeavor therefore Computational Thinking (CT) is gradually being accepted as a required skill for the 21st century science student. Students deserve relevant conceptual learning accessible through practical, constructionist approaches in cross-curricular applications therefore it is required for educators to define, practice and assess practical ways of introducing CT to science education starting from elementary school. Background: Computational Thinking is a set of problem-solving skills evolving from the computer science field. This work-in-progress research assesses the CT skills, along with science concepts, of students participating in a science program in school. The program pertains learning science by modeling and simulating real world phenomenon using an agent-based modeling practice. Methodology: This is an intervention research of a science program. It takes place as part of structured learning activities of 4th and 5th grade classes which are teacher-guided and are conducted in school. Both qualitative and quantitative evaluations are parts of the mixed methods research methodology using a variety of evaluation technique, including pretests and posttests, surveys, artifact-based interviews, in class observations and project evaluations. Contribution: CT is an emerging skill in learning science. It is requiring school systems to give increased attention for promoting students with the opportunity to engage in CT activities alongside with ways to promote a deeper understanding of science. Currently there is a lack of practical ways to do so and lack of methods to assess the results therefore it is an educational challenge. This paper presents a response to this challenge by proposing a practical program for school science courses and an assessment method. Findings: This is a research in progress which finding are based on a pilot study. The researches believe that findings may indicate improved degree of students' science understanding and problem-solving skills. Recommendations for Practitioners: Formulating computer simulations by students can have great potential on learning science with embedded CT skills. This approach could enable learners to see and interact with visualized representations of natural phenomena they create. Although most teachers do not learn about CT in their initial education, it is of paramount importance that such programs, as the one described in this research, will assist teachers with the opportunity to introduce CT into science studies. Recommendation for Researchers: Scientific simulation design in primary school is at its dawn. Future research investment and investigation should focus on assessment of aspects of the full Computational Thinking for Science taxonomy. In addition, to help teachers assess CT skills, new tools and criteria are required. Impact on Society: STEM related professions are lacking the man power required therefore the full potential of the economy of developed countries is not fulfilled. Having students acquire computational thinking skills through formal education may prepare the next generation of world class scientists and attract larger populations to these fields. Future Research: The inclusion of computational thinking as a core scientific practice in the Next Generation Science Standards is an important milestone, but there is still much work to do toward addressing the challenge of CT-Science education to grow a generation of technologically and scientifically savvy individuals. New comprehensive approaches are needed to cope with the complexity of cognitive processes related to CT.


Sign in / Sign up

Export Citation Format

Share Document