scholarly journals Estimation of metabolic heat input for refuge alternative thermal testing and simulation

2018 ◽  
Vol 70 (8) ◽  
pp. 50-54 ◽  
Author(s):  
T.E. Bernard ◽  
D.S. Yantek ◽  
E.D. Thimons
1982 ◽  
Vol 63 (2) ◽  
pp. 127-135 ◽  
Author(s):  
J. B. Morrison ◽  
M. L. Conn ◽  
P. A. Hayes

1. Ten male subjects were cooled on three occasions to a rectal temperature of 35°C by immersion to the neck in water at 11·3°C. The subjects were rewarmed for 60 min, once by metabolic heat production alone (shivering), once by inhalation rewarming with spontaneous breathing of saturated air at 47°C (control) and once by inhalation rewarming with ventilation regulated at 40 litres/min by respiring a controlled fraction of CO2 (hyperventilation). 2. Metabolic heat production was substantially reduced by inhalation rewarming (P < 0·05), from 913 kJ when shivering to 766 kJ (control) and 613 kJ when hyperventilating. The fall in metabolic heat production was greater than the corresponding respiratory heat gain, which increased from a loss of 41 kJ when shivering to gains of 85 kJ (control) and 169 kJ (hyperventilation). 3. As differences in mean skin temperatures were small (<1·0°C), it is concluded that the lower metabolic heat production in response to increased respiratory heat input must result from more rapid central temperature gains. This conclusion is supported by the relative values of rectal and tympanic temperatures. It was calculated that the percentage of the total heat supply which was donated to the core increased from 13% during shivering to 16% for the control and 23% in hyperventilation. Results imply that respiratory heat input is more efficient than metabolic heat production in elevating central temperature.


2010 ◽  
Vol 48 (04) ◽  
pp. 289-296 ◽  
Author(s):  
Myung-Bok Kim ◽  
Sang-Ju Kim ◽  
Bong-Keun Lee ◽  
Xinjian Yuan ◽  
Byoung-Hyun Yoon ◽  
...  

1964 ◽  
Author(s):  
JEREMY CROCKER ◽  
PAUL WEBB ◽  
DAVID JENNINGS
Keyword(s):  

Author(s):  
Willian Valicelli Sanitá ◽  
Vicente Afonso Ventrella ◽  
Juno Gallego

2020 ◽  
Vol 38 (1A) ◽  
pp. 88-104
Author(s):  
Anwar S. Barrak ◽  
Ahmed A. M. Saleh ◽  
Zainab H. Naji

This study is investigated the thermal performance of seven turns of the oscillating heat pipe (OHP) by an experimental investigation and CFD simulation. The OHP is designed and made from a copper tube with an inner diameter 3.5 mm and thickness 0.6 mm and the condenser, evaporator, and adiabatic lengths are 300, 300, and 210 mm respectively.  Water is used as a working fluid with a filling ratio of 50% of the total volume. The evaporator part is heated by hot air (35, 40, 45, and 50) oC with various face velocity (0.5, 1, and 1.5) m/s. The condenser section is cold by air at temperature 15 oC. The CFD simulation is done by using the volume of fluid (VOF) method to model two-phase flow by conjugating a user-defined function code (UDF) to the FLUENT code. Results showed that the maximum heat input is 107.75 W while the minimum heat is 13.75 W at air inlet temperature 35 oC with air velocity 0.5m/s. The thermal resistance decreased with increasing of heat input. The results were recorded minimum thermal resistance 0.2312 oC/W at 107.75 W and maximum thermal resistance 1.036 oC/W at 13.75W. In addition, the effective thermal conductivity increased due to increasing heat input.  The numerical results showed a good agreement with experimental results with a maximum deviation of 15%.


Sign in / Sign up

Export Citation Format

Share Document