scholarly journals Сerebroprotective effect of some phenolic acids under conditions of experimental brain ischemia

2020 ◽  
Vol 7 (6) ◽  
pp. 332-339
Author(s):  
A. V. Voronkov ◽  
D. I. Pozdnyakov ◽  
S. A. Nigaryan

The aim of the study was to evaluate the cerebroprotective effect of some phenolic acids under the conditions of experimental cerebral ischemia in rats.Materials and methods. The experiment was conducted on male Wistar rats weighing 220–240 g. Focal cerebral ischemia was modeled by irreversible right-sided thermocoagulation of the middle cerebral artery under chloral hydrate anesthesia (350 mg/kg, intraperitoneally). The experimental compounds (4-hydroxy-3.5-di-tert-butyl cinnamic acid, caffeic acid and gallic acid 100 mg/kg each compound) and a reference drug (Mexicor – 100 mg/kg) were administered intragastrically next day after the surgery and then for three daysrunning. The effect of the test-compounds on the cognitive functions of the rats was evaluated by CRPA and TEA tests. The influence of the compounds on the changes in the concentration of lactate, pyruvate, homocysteine, as well as the degree of cerebral edema formation and necrosis of the brain tissue, were studied.Results. In the study, it has been established that against the background of the focal cerebral ischemia, the administration of caffeic, 4-hydroxy-3,5-di-tert-butylcinnamic and gallic acid, contributed to the preservation of a memorable trace in rats, as well as a decrease in lactate concentration (by 40.37% (p<0.05), 151.26% (p<0.05), 48.02% (p<0.05)) and pyruvate (by 96.6,% (p<0.05), 38, 78% (p<0.05), 33.3% (p<0.05)), homocysteine (by 59.6% (p<0.05), 102.18% (p<0.05), 28.8% (p<0.05)), аnecrosis zone (by 122.79% (p<0.05), 165.11% (p<0.05), 12.38% (p<0,05)) and cerebral edema (by 10.47% (p<0.05), 11.08% (p<0.05), 9.92% (p<0.05)) relative to the NC group of rats.Conclusion. The obtained data indicate the possibility of further detailed investigation of the cerebroprotective effect of 4-hydroxy-3,5-di-tert-butylcinnamic, caffeic and gallic acids.

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Jintanaporn Wattanathorn ◽  
Jinatta Jittiwat ◽  
Terdthai Tongun ◽  
Supaporn Muchimapura ◽  
Kornkanok Ingkaninan

Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect ofZingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO). Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sichao Chen ◽  
Linqian Shao ◽  
Li Ma

Brain edema is a severe stroke complication that is associated with prolonged hospitalization and poor outcomes. Swollen tissues in the brain compromise cerebral perfusion and may also result in transtentorial herniation. As a physical and biochemical barrier between the peripheral circulation and the central nervous system (CNS), the blood–brain barrier (BBB) plays a vital role in maintaining the stable microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the dysfunction of the BBB results in increased paracellular permeability, directly contributing to the extravasation of blood components into the brain and causing cerebral vasogenic edema. Recent studies have led to the discovery of the glymphatic system and meningeal lymphatic vessels, which provide a channel for cerebrospinal fluid (CSF) to enter the brain and drain to nearby lymph nodes and communicate with the peripheral immune system, modulating immune surveillance and brain responses. A deeper understanding of the function of the cerebral lymphatic system calls into question the known mechanisms of cerebral edema after stroke. In this review, we first discuss how BBB disruption after stroke can cause or contribute to cerebral edema from the perspective of molecular and cellular pathophysiology. Finally, we discuss how the cerebral lymphatic system participates in the formation of cerebral edema after stroke and summarize the pathophysiological process of cerebral edema formation after stroke from the two directions of the BBB and cerebral lymphatic system.


1991 ◽  
Vol 260 (2) ◽  
pp. H563-H568 ◽  
Author(s):  
A. L. Betz ◽  
J. Randall ◽  
D. Martz

Xanthine oxidase (XO) has been proposed as an important source of free radicals during ischemia. This enzyme normally exists as a dehydrogenase (XD), but it is converted to XO in some ischemic tissues. Recently, treatment of animals with the XD and XO inhibitor allopurinol or with free radical scavengers before cerebral ischemia has been shown to reduce brain injury. Therefore, we studied conversion of XD to XO in three ischemic and nonischemic brain regions during focal cerebral ischemia resulting from permanent occlusion of the middle cerebral artery (MCAO) in anesthetized rats. In nonischemic brain, 16-22% of the enzyme was in the XO form. After 24 h of ischemia this value was not significantly different (10-15%). Neither the total activity of XO nor that of XD changed, indicating that there was no irreversible conversion of XD to XO. To further explore the possible role of XO, we examined the effect of various doses of allopurinol (5, 20, or 100 mg/kg given 1 h before MCAO or 100 mg/kg given 48, 24, and 1 h before MCAO) on uric acid accumulation, brain edema formation, and cerebral blood flow (CBF) 24 h after MCAO. All but the lowest dose of allopurinol greatly reduced the appearance of uric acid in the ischemic brain; however, only the highest dose of allopurinol had any beneficial effect on brain edema. This reduction in brain edema occurred without a significant improvement in CBF. Thus XO is probably not an important source of free radicals in this model of focal cerebral ischemia.


Physiology ◽  
2009 ◽  
Vol 24 (4) ◽  
pp. 257-265 ◽  
Author(s):  
Kristopher T. Kahle ◽  
J. Marc Simard ◽  
Kevin J. Staley ◽  
Brian V. Nahed ◽  
Pamela S. Jones ◽  
...  

The brain achieves homeostasis of its intracellular and extracellular fluids by precisely regulating the transport of solute and water across its major cellular barriers: endothelia of the blood-brain barrier (BBB), choroid plexus epithelia, and neuroglial cell membranes. Cerebral edema, the pathological accumulation of fluid in the brain’s intracellular and extracellular spaces, is a major cause of morbidity and mortality following stroke and other forms of ischemic brain injury. Until recently, mechanisms of cerebral edema formation have been obscure; consequently, its treatment has been empiric and suboptimal. Here, we provide a paradigm for understanding ischemic cerebral edema, showing that its molecular pathogenesis is a complex yet step-wise process that results largely from impaired astrocytic cell volume regulation and permeability alterations in the cerebral microvasculature, both of which arise from pathological changes in the activities of specific ion channels and transporters. Recent data has implicated the bumetanide-sensitive NKCC1, an electroneutral cotransporter expressed in astrocytes and the BBB, in cerebral edema formation in several different rodent models of stroke. Pharmacological inhibition or genetic deficiency of NKCC1 decreases ischemia-induced cell swelling, BBB breakdown, cerebral edema, and neurotoxicity. Combination pharmacological strategies that include NKCC1 as a target might thus prove beneficial for the treatment of ischemic, and potentially other types of, cerebral edema.


1971 ◽  
Vol 35 (2) ◽  
pp. 155-166 ◽  
Author(s):  
Y. Lucas Yamamoto ◽  
Kathryne M. Phillips ◽  
Charles P. Hodge ◽  
William Feindel

✓ A branch of the middle cerebral artery on the convexity of the dog brain was occluded to produce an area of focal cerebral ischemia which could then be defined by fluorescein angiography of the brain. Repeated fluorescein angiography and measurement of microregional cerebral blood flow by xenon133 injected into the carotid artery and monitored by miniature lithium-drifted silicon detectors for gamma activity demonstrated that the ischemic zone was reduced in size by better collateral flow when the animals were allowed to breathe 5% carbon dioxide and 95% oxygen. Conversely, hyperventilation reducing the pCO2 made the ischemic zone larger by reducing collateral flow. No evidence was found to indicate that hypercapnia preferentially deprived the ischemic zone of perfusion flow. Retrograde collateral flow in the surface arteries appeared effective in terms of microcirculatory perfusion.


Sign in / Sign up

Export Citation Format

Share Document