Effect of Ischemic Preconditioning on Edema Formation and Cerebrovascular Injury Following Focal Cerebral Ischemia

Author(s):  
T. Masada ◽  
Y. Hua ◽  
G. Xi ◽  
S. R. Ennis ◽  
Richard F. Keep
1991 ◽  
Vol 260 (2) ◽  
pp. H563-H568 ◽  
Author(s):  
A. L. Betz ◽  
J. Randall ◽  
D. Martz

Xanthine oxidase (XO) has been proposed as an important source of free radicals during ischemia. This enzyme normally exists as a dehydrogenase (XD), but it is converted to XO in some ischemic tissues. Recently, treatment of animals with the XD and XO inhibitor allopurinol or with free radical scavengers before cerebral ischemia has been shown to reduce brain injury. Therefore, we studied conversion of XD to XO in three ischemic and nonischemic brain regions during focal cerebral ischemia resulting from permanent occlusion of the middle cerebral artery (MCAO) in anesthetized rats. In nonischemic brain, 16-22% of the enzyme was in the XO form. After 24 h of ischemia this value was not significantly different (10-15%). Neither the total activity of XO nor that of XD changed, indicating that there was no irreversible conversion of XD to XO. To further explore the possible role of XO, we examined the effect of various doses of allopurinol (5, 20, or 100 mg/kg given 1 h before MCAO or 100 mg/kg given 48, 24, and 1 h before MCAO) on uric acid accumulation, brain edema formation, and cerebral blood flow (CBF) 24 h after MCAO. All but the lowest dose of allopurinol greatly reduced the appearance of uric acid in the ischemic brain; however, only the highest dose of allopurinol had any beneficial effect on brain edema. This reduction in brain edema occurred without a significant improvement in CBF. Thus XO is probably not an important source of free radicals in this model of focal cerebral ischemia.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S259-S259 ◽  
Author(s):  
Marlise de Castro Ribeiro ◽  
Lorenz Hirt ◽  
Julien Bogousslavsky ◽  
Luca Regli ◽  
Jerome Badaut

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jiao Y ◽  
◽  
Wang J ◽  

Objectives: The present study aims to investigate the effect of Limb Remote Ischemic Preconditioning (LRIP) on the expression of Nogo-A and PirB in the cortex of mice with focal cerebral ischemia, and related pathways involving in axonal regeneration and neurological function recovery after cerebral ischemia. Methods: Adult male C57/BL6 mice were divided into sham-operated (sham), transient Middle Cerebral Artery Occlusion (MCAO), LRIP and anti- PirBAb treatment group. Samples were collected 48h after cerebral ischemia. The histopathologic changes were assessed by 1,3,5-Triphenyl-2H-Tetrazolium Chloride (TTC), and Hematoxylin and Eosin (HE) staining and TUNEL method. The expression of Nogo-A and PirB were determined by immunofluorescence, RT-PCR and Western blot respectively. Results: TTC staining showed that LRIP treatment reduced the infarct size of mice and anti-PirBAb treatment further decline the infarct size, which was accompanied with the decline of neurological deficit score and reduction of neuronal damage. LRIP treatment also reduced the TUNEL positive cells induced by MCAO and anti-PirBAb treatment further strengthened the effect of LRIP. Except sham group, the expressions of Nogo-A and PirB in other three groups all increased with varying degrees, among which MCAO group was the highest, LRIP group was the second and the anti-PirBAb group was the lowest. The expressions of growth associated protein 43 (GAP43) showed opposite tendency. Conclusions: LRIP plays beneficial influence on cerebral ischemia. LRIP and PirB inhibition combination has a better protective effect on nervous system after cerebral ischemia in mice.


Sign in / Sign up

Export Citation Format

Share Document