Microregional blood flow changes in experimental cerebral ischemia

1971 ◽  
Vol 35 (2) ◽  
pp. 155-166 ◽  
Author(s):  
Y. Lucas Yamamoto ◽  
Kathryne M. Phillips ◽  
Charles P. Hodge ◽  
William Feindel

✓ A branch of the middle cerebral artery on the convexity of the dog brain was occluded to produce an area of focal cerebral ischemia which could then be defined by fluorescein angiography of the brain. Repeated fluorescein angiography and measurement of microregional cerebral blood flow by xenon133 injected into the carotid artery and monitored by miniature lithium-drifted silicon detectors for gamma activity demonstrated that the ischemic zone was reduced in size by better collateral flow when the animals were allowed to breathe 5% carbon dioxide and 95% oxygen. Conversely, hyperventilation reducing the pCO2 made the ischemic zone larger by reducing collateral flow. No evidence was found to indicate that hypercapnia preferentially deprived the ischemic zone of perfusion flow. Retrograde collateral flow in the surface arteries appeared effective in terms of microcirculatory perfusion.

1989 ◽  
Vol 70 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Toshihiko Kuroiwa ◽  
Makoto Shibutani ◽  
Riki Okeda

✓ The effect of suppression of postischemic reactive hyperemia on the blood-brain barrier (BBB) and ischemic brain edema after temporary focal cerebral ischemia was studied in cats under ketamine and alpha-chloralose anesthesia. Regional cerebral blood flow (rCBF) was measured by a thermal diffusion method and a hydrogen clearance method. The animals were separated into three groups. In Group A, the left middle cerebral artery (MCA) was occluded for 6 hours. In Group B, the MCA was occluded for 3 hours and then reperfused for 3 hours; postischemic hyperemia was suppressed to the preischemic level by regulating the degree of MCA constriction. In Group C, the MCA was occluded for 3 hours and reperfused for 3 hours without suppressing the postischemic reactive hyperemia. The brain was removed and cut coronally at the site of rCBF measurement. The degree of ischemic edema was assessed by gravimetry in samples taken from the coronal section and correlated with the degree of BBB disruption at the corresponding sites, evaluated by densitometric determination of Evans blue discoloration. The findings showed that 1) ischemic edema was significantly exacerbated by postischemic hyperemia during reperfusion in parallel with the degree of BBB opening to serum proteins, and 2) suppression of postischemic hyperemia significantly reduced the exacerbation of ischemic edema and BBB opening. These findings indicate that blood flow may be restored without significant exacerbation of postischemic edema by the suppression of postischemic hyperemia in focal cerebral ischemia.


1981 ◽  
Vol 54 (6) ◽  
pp. 773-782 ◽  
Author(s):  
Thomas H. Jones ◽  
Richard B. Morawetz ◽  
Robert M. Crowell ◽  
Frank W. Marcoux ◽  
Stuart J. FitzGibbon ◽  
...  

✓ An awake-primate model has been developed which permits reversible middle cerebral artery (MCA) occlusion during physiological monitoring. This method eliminates the ischemia-modifying effects of anesthesia, and permits correlation of neurological function with cerebral blood flow (CBF) and neuropathology. The model was used to assess the brain's tolerance to focal cerebral ischemia. The MCA was occluded for 15 or 30 minutes, 2 to 3 hours, or permanently. Serial monitoring evaluated neurological function, local CBF (hydrogen clearance), and other physiological parameters (blood pressure, blood gases, and intracranial pressure). After 2 weeks, neuropathological evaluation identified infarcts and their relation to blood flow recording sites. Middle cerebral artery occlusion usually caused substantial decreases in local CBF. Variable reduction in flow correlated directly with the variable severity of deficit. Release of occlusion at up to 3 hours led to clinical improvement. Pathological examination showed microscopic foci of infarction after 15 to 30 minutes of ischemia, moderate to large infarcts after 2 to 3 hours of ischemia, and in most cases large infarcts after permanent MCA occlusion. Local CBF appeared to define thresholds for paralysis and infarction. When local flow dropped below about 23 cc/100 gm/min, reversible paralysis occurred. When local flow fell below 10 to 12 cc/100 gm/min for 2 to 3 hours or below 17 to 18 cc/100 gm/min during permanent occlusion, irreversible local damage was observed. These studies imply that some cases of acute hemiplegia, with blood flow in the paralysis range, might be improved by surgical revascularization. Studies of local CBF might help identify suitable cases for emergency revascularization.


2003 ◽  
Vol 99 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Oren Sagher ◽  
Dah-Luen Huang ◽  
Richard F. Keep

Object. The authors previously showed that spinal cord stimulation (SCS) increases cerebral blood flow in rats, indicating that this technique may be useful in the treatment of focal cerebral ischemia. In the present study, the neuroprotective potential of SCS in the setting of middle cerebral artery occlusion (MCAO) was investigated. Methods. The authors induced permanent, focal cerebral ischemia by using either suture-induced occlusion or direct division of the MCA in Sprague—Dawley rats. Electrical stimulation of the cervical spinal cord was performed during cerebral ischemia. Cerebral blood flow was assessed using both laser Doppler flowmetry (LDF) and quantitative radiotracer analysis. Stroke volumes were analyzed after 6 hours of ischemia. Spinal cord stimulation resulted in a 52.7 ± 13.3% increase in LDF values (nine animals). Following MCAO, LDF values decreased by 64.1 ± 3.6% from baseline values (10 animals). Spinal cord stimulation subsequently increased LDF values to 30.9 ± 13.5% below original baseline values. These findings were corroborated using radiotracer studies. Spinal cord stimulation in the setting of transcranial MCAO significantly reduced stroke volumes as well (from 203 ± 33 mm3 [control] to 32 ± 8 mm3 [MCAO plus SCS], seven animals in each group, p < 0.001). Similarly, after suture-induced MCAO, SCS reduced stroke volumes (from 307 ± 29 mm3 [control] to 78 ± 22 mm3 [MCAO plus SCS], 10 animals in each group, p < 0.001). Conclusions. A strategy of performing SCS for the prevention of critical ischemia is feasible and may have the potential for the treatment and prevention of stroke.


2002 ◽  
Vol 96 (5) ◽  
pp. 918-923 ◽  
Author(s):  
Joseph C. Watson ◽  
Alexander M. Gorbach ◽  
Ryszard M. Pluta ◽  
Ramin Rak ◽  
John D. Heiss ◽  
...  

Object. Application of sensitive infrared imaging is ideally suited to observe blood vessels and blood flow in exposed organs, including the brain. Temporary vascular occlusion is an important part of neurosurgery, but the capacity to monitor the effects of these occlusions in real time is limited. In surgical procedures that require vascular manipulation, such as those involving aneurysms, arteriovenous malformations (AVMs), or tumors, the ability to visualize blood flow in vessels and their distribution beds would be beneficial. The authors recount their experience in the use of a sensitive (0.02°C), high-resolution (up to 50 µm/pixel) infrared camera with a rapid shutter speed (up to 2 msec/frame) for localizing cortical function intraoperatively. They observed high-resolution images of cerebral arteries and veins. The authors hypothesized that infrared imaging of cerebral arteries, performed using a sensitive, high-resolution camera during surgery, would permit changes in arterial flow to be be seen immediately, thus providing real-time assessment of brain perfusion in the involved vascular territory. Methods. Cynomolgus monkeys underwent extensive craniectomies, exposing the frontal, parietal, and temporal lobes. Temporary occlusions of the internal carotid artery and middle cerebral artery branches (30 events) were performed serially and were visualized with the aid of an infrared camera. Arteries and veins of the monkey brain were clearly visualized due to cooling of the exposed brain, which contrasted with blood within the vessels that remained at core temperature. Blood flow changes in vessels were seen immediately (< 1 second) in real time during occlusion and reopening of the vessels, regardless of the duration of the occlusion. Areas of decreased cortical blood flow rapidly cooled (−0.3 to 1.3°C) and reheated in response to reperfusion. Rewarming occurred faster in arteries than in the cortex (for a 20-minute occlusion, the change in temperature per second was 2 × 10−2°C in the artery and 7 × 10−3°C in the brain). Collateral flow could be evaluated by intraoperative observations and data processing. Conclusions. Use of high-resolution, digital infrared imaging permits real-time visualization of arterial flow. It has the potential to provide the surgeon with a means to assess collateral flow during temporary vessel occlusion and to visualize directly the flow in parent arteries or persistent filling of an aneurysm after clipping. During surgery for AVMs, the technique may provide a new way to assess arterial inflow, venous outflow, results of embolization, collateral flow, steal, and normal perfusion pressure breakthrough.


1986 ◽  
Vol 64 (4) ◽  
pp. 617-626 ◽  
Author(s):  
Fredric B. Meyer ◽  
Robert E. Anderson ◽  
Tony L. Yaksh ◽  
Thoralf M. Sundt

✓ Intracellular brain pH, cortical blood flow, and electroencephalograms (EEG's) were recorded in severely and moderately ischemic regions in 10 control and 10 nimodipine-treated rabbits prior to and following major branch occlusion of the middle cerebral artery (MCA). Preocclusion cortical blood flow was 51 ml/100 gm/min and intracellular brain pH was 7.01 in both the control and the treated animals. After MCA occlusion, the severely ischemic regions in the control group showed initial and 4-hour postocclusion flows of 12.7 and 5.2 ml/100 gm/min with a brain pH of 6.64 and 6.08, respectively. In animals given nimodipine after MCA occlusion, blood flow increased from 10.5 to 18.8 ml/100 gm/min, with an associated elevation in intracellular brain pH from 6.57 to 6.91. Comparable findings were observed in areas of moderate ischemia. Improvements in cortical blood flow, intracellular brain pH, and EEG attenuations produced by nimodipine were all statistically significant. Inspection of the cortex revealed reversal of cortical pallor and small-vessel spasm following treatment with nimodipine. It is hypothesized that nimodipine exerts its effects through reversal of ischemia-induced secondary vasoconstriction, and that this drug may be an important adjunctive treatment for patients with focal cerebral ischemia.


1991 ◽  
Vol 75 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Jun Harada ◽  
Akira Takaku ◽  
Shunro Endo ◽  
Naoya Kuwayama ◽  
Osamu Fukuda

✓ Normal cerebral blood flow (CBF), critical CBF at a flat reading of the electroencephalogram (EEG), and reversibility of the flat EEG after reperfusion were investigated in a total of 59 pigs, including seven newborns (1 to 3 days of age), 38 juveniles (1 month old), and 14 adults (7 months old). The CBF was determined by the hydrogen clearance method; the EEG was recorded continuously and a power spectrum analysis was performed. Cerebral ischemia was produced by occlusion of both common carotid arteries and induction of hypotension (approximately 50 mm Hg). The flat EEG reversibility was investigated for 3 hours after reperfusion. As parameters of brain development, the neuronal density and the time at which the S-100 protein appeared in the brain were examined. Normal CBF was highest in neonatal pigs and decreased with age. The critical CBF at a flat EEG was lowest in newborn pigs and was elevated with development of the brain. Tolerance against cerebral ischemia was greatest in newborn pigs.


1972 ◽  
Vol 37 (4) ◽  
pp. 385-397 ◽  
Author(s):  
Y. Lucas Yamamoto ◽  
William Feindel ◽  
Leonhard S. Wolfe ◽  
Hiroko Katoh ◽  
Charles P. Hodge

✓ Effects of intracarotid infusion of prostaglandins (PG) E1 and F2a on the circulation to the dog brain were examined by fluorescein angiography, by measuring diameter changes in the epicerebral vessels, and by measuring microregional cerebral blood flow with 133xenon and lithium-drift silicon detectors. PGE1 at doses of 0.5 µg/min constricted the epicerebral arteries 700 µ or less in diameter, arrested fluorescein dye injected into the carotid system, and reduced rCBF by 42% with increase of collateral flow to the brain by the vertebrobasilar system. This effect was not obtained by PGE1 to which 0.08% ethanol had been added. PGF2a at doses of 25 µg/min constricted epicerebral arterial vessels less than 200 µ in diameter, reduced rCBF by 35%, and decreased fluorescein dye in the cortical microcirculation with lengthening of the cerebral circulation time. Selective clipping of external and internal carotid arteries indicated that PGE1 acts by constricting these vessels as well as the epicerebral arteries. Since prostaglandins are released from platelets as well as from stimulation of the cerebral cortex they should be considered as factors involved in the regulation of cerebral blood flow and in the mechanism of cerebral vasospasm. These properties of PGE1 and PGF2a also imply the need for caution when these substances are used for clinical investigation.


1983 ◽  
Vol 59 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Jerry L. Hubbard ◽  
Thoralf M. Sundt

✓ Focal incomplete cerebral ischemia was created in 20 adult cats by retro-orbital middle cerebral artery (MCA) occlusion under halothane anesthesia. Arterial blood gas, cerebral blood flow (CBF), bilateral electroen-cephalographic (EEG) recordings, and systemic arterial blood pressure (SABP) were monitored for the 1st hour of occlusion. Ten animals were treated with 10 mg/kg of naloxone within 10 minutes of MCA clipping, followed by a continuous infusion of naloxone at 2 mg/kg/hr for the duration of the occlusion (8 hours). Ten animals were treated in a similar fashion with physiological saline (control). Blood flow was restored after 8 hours. The brains were examined at the time of death or 7 days after the occlusion period. There was no difference between the two groups regarding cerebral infarction size or distribution, neurological outcome, SABP, PaCO2, or CBF. Minor changes in EEG amplitude observed in the naloxone-treated group appear to represent interaction of the drug with halothane after prolonged administration. The authors conclude that naloxone did not modify the outcome of focal cerebral ischemia in the cat.


1982 ◽  
Vol 56 (4) ◽  
pp. 482-497 ◽  
Author(s):  
Jens Astrup

✓ The energy-requiring cell functions in the brain are described. The role of specific inhibition of these functions, and their critical low-supply levels of blood flow and oxygen are reviewed in relation to clinical management of focal and complete global cerebral ischemia.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Jintanaporn Wattanathorn ◽  
Jinatta Jittiwat ◽  
Terdthai Tongun ◽  
Supaporn Muchimapura ◽  
Kornkanok Ingkaninan

Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect ofZingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO). Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia.


Sign in / Sign up

Export Citation Format

Share Document