Мodel for detecting and evaluating the fire hazard of spark discharges in the electrical networks of passenger cars based on the use of fiber- optic sensors

2021 ◽  
pp. 46-51
Author(s):  
Vladislav Andreevich Khanis ◽  
◽  
Sergey Valeryevich Bespalko ◽  
Igor Alexeevich Klyuchikov ◽  
Andrey Leonidovich Khanis ◽  
...  

The paper substantiates an approach to assessing the fire hazard of spark discharges in the electrical equipment elements of passenger cars of rolling stock based on the detection of optical flashes using fiber-optic sensors. The presented numerical model makes it possible to realize the possibility of detecting and evaluating optical flashes of weak spark discharges on potentially fire-hazardous electrical contacts in the electrical networks of passenger cars. To solve this problem, it seems appropriate to place sensors of electrical discharges using optical fibers to deliver to them the radiation of optical flashes of spark discharges from fire-hazardous spatially remote elements of the electrical network.

2020 ◽  
Vol 23 (2) ◽  
pp. 52-58
Author(s):  
S. SKRYPNYK ◽  

Our world with its high technologies has long been deeply dependent on the quality of electricity supply. In most countries of the world there are national power grids that combine the entire set of generating capacity and loads. This network provides the operation of household appliances, lighting, heating, refrigeration, air conditioning and transport, as well as the functioning of the state apparatus, industry, finance, trade, health services and utilities across the country. Without this utility, namely electricity, the modern world simply could not live at its current pace. Sophisticated technological improvements are firmly rooted in our lives and workplaces, and with the advent of e-commerce began the process of continuous transformation of the way individuals interact with the rest of the world. But with the achievement of intelligent technologies, an uninterrupted power supply is required, the parameters of which exactly meet the established standards. These standards maintain our energy security and create a reliable power system, that is maintaining the system in a trouble-free state. Overvoltage is the deviation of the rated voltage from the value of the corresponding quality standard (frequency, sinusoidal voltage and compliance of harmonics). Overvoltage in terms of fire hazard is one of the most dangerous emergency modes of electrical equipment, which causes conditions that in most cases are sufficient for the occurrence of fire hazards (exceeding the allowable voltage leads to disruption of normal operation or possible ignition). Against the background of deteriorating engineering systems, increased power consumption and poor maintenance, power supply of electrical installations, the main causes of overvoltage in electrical networks are thunderstorms (atmospheric overvoltage), switching switches, uneven phase load in electrical networks, etc. The physical picture of internal overvoltage is due to oscillatory transients from the initial to the established voltage distributions in the conductive sections due to the different situation in the electrical circuit. In the conditions of operation of electric networks planned, mode or emergency situations are possible. Therefore, the ranges of overvoltage are determined by the range from several hundred volts to tens and hundreds of kilovolts, and depend on the types of overvoltage. Atmospheric overvoltage is considered to be one of the most dangerous types of emergency modes of operation of the electrical network. This overvoltage occurs as a result of lightning discharge during precipitation by concentrating electricity on the surface of the object, the introduction of potential through engineering networks and


2021 ◽  
Author(s):  
A. N. Popov ◽  
S. V. Bushuev ◽  
R. Z. Galinurov ◽  
A. B. Nikitin

2018 ◽  
Vol 138 (12) ◽  
pp. 525-532
Author(s):  
Masahiko Ito ◽  
Yuya Koyama ◽  
Michiko Nishiyama ◽  
Emi Yanagisawa ◽  
Mariko Hayashi ◽  
...  

2000 ◽  
Author(s):  
Bruce K. Fink ◽  
Kelli Corona-Bittick

2021 ◽  
Vol 39 (1) ◽  
pp. 336-336
Author(s):  
George. Y. Chen ◽  
Christophe A. Codemard ◽  
Philip M. Gorman ◽  
Jaclyn S. Chan ◽  
Michalis N. Zervas

1997 ◽  
Author(s):  
Robert P. Kenny ◽  
E. Gutierrez ◽  
Alfredo C. Lucia ◽  
Maurice P. Whelan ◽  
F. Gaiazzi

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1397
Author(s):  
Yang-Duan Su ◽  
Yuliya Preger ◽  
Hannah Burroughs ◽  
Chenhu Sun ◽  
Paul Ohodnicki

Applications of fiber optic sensors to battery monitoring have been increasing due to the growing need of enhanced battery management systems with accurate state estimations. The goal of this review is to discuss the advancements enabling the practical implementation of battery internal parameter measurements including local temperature, strain, pressure, and refractive index for general operation, as well as the external measurements such as temperature gradients and vent gas sensing for thermal runaway imminent detection. A reasonable matching is discussed between fiber optic sensors of different range capabilities with battery systems of three levels of scales, namely electric vehicle and heavy-duty electric truck battery packs, and grid-scale battery systems. The advantages of fiber optic sensors over electrical sensors are discussed, while electrochemical stability issues of fiber-implanted batteries are critically assessed. This review also includes the estimated sensing system costs for typical fiber optic sensors and identifies the high interrogation cost as one of the limitations in their practical deployment into batteries. Finally, future perspectives are considered in the implementation of fiber optics into high-value battery applications such as grid-scale energy storage fault detection and prediction systems.


Sign in / Sign up

Export Citation Format

Share Document