On the Credibility Judgment of Eyewitness Statements using Tension Index according to Electroencephalogram (EEG) Analysis

2021 ◽  
Vol 15 (4) ◽  
pp. 274-280
Author(s):  
Seong-Kweon Shin
2020 ◽  
Vol 32 (4) ◽  
pp. 723-723
Author(s):  
Shoichiro Fujisawa ◽  
Minoru Fukumi ◽  
Jianting Cao ◽  
Yasue Mitsukura ◽  
Shin-ichi Ito

Brain machine/computer interface (BMI/BCI) technologies are based on analyzing brain activity to control machines and support the communication of commands and messages. To sense brain activities, a functional NIRS and electroencephalogram (EEG) that has been developed for that purpose is often employed. Analysis techniques and algorithms for the NIRS and EEG signals have also been created, and human support systems in the form of BMI/BCI applications have been developed. In the field of rehabilitation, BMI/BCI is used to control environment control systems and electric wheelchairs. In medicine, BMI/BCI is used to assist in communications for patient support. In industry, BMI/BCI is used to analyze sensibility and develop novel games. This special issue on Brain Machine/Computer Interface and its Application includes six interesting papers that cover the following topics: an EEG analysis method for human-wants detection, cognitive function using EEG analysis, auditory P300 detection, a wheelchair control BCI using SSVEP, a drone control BMI based on SSVEP that uses deep learning, and an improved CMAC model. We thank all authors and reviewers of the papers and the Editorial Board of Journal of Robotics and Mechatronics for its help with this special issue.


2020 ◽  
pp. 679-692
Author(s):  
Sadaf Iqbal ◽  
Muhammed Shanir P.P. ◽  
Yusuf Uzzaman Khan ◽  
Omar Farooq

Scalp electroencephalogram (EEG) is one of the most commonly used methods to acquire EEG data for brain-computer interfaces (BCIs). Worldwide a large number of people suffer from disabilities which impair normal communication. Communication BCIs are an excellent tool which helps the affected patients communicate with others. In this paper scalp EEG data is analysed to discriminate between the imagined vowel sounds /a/, /u/ and no action or rest as control state. Mean absolute deviation (MAD) and Arithmetic mean are used as features to classify data into one of the classes /a/, /u/ or rest. With high classification accuracies of 87.5-100% for two class problem and 78.33-96.67% for three class problem that have been obtained in this work, this algorithm can be used in communication BCIs, to develop speech prosthesis and in synthetic telepathy systems.


2016 ◽  
Vol 3 (2) ◽  
pp. 32-44
Author(s):  
Sadaf Iqbal ◽  
Muhammed Shanir P.P. ◽  
Yusuf Uzzaman Khan ◽  
Omar Farooq

Scalp electroencephalogram (EEG) is one of the most commonly used methods to acquire EEG data for brain-computer interfaces (BCIs). Worldwide a large number of people suffer from disabilities which impair normal communication. Communication BCIs are an excellent tool which helps the affected patients communicate with others. In this paper scalp EEG data is analysed to discriminate between the imagined vowel sounds /a/, /u/ and no action or rest as control state. Mean absolute deviation (MAD) and Arithmetic mean are used as features to classify data into one of the classes /a/, /u/ or rest. With high classification accuracies of 87.5-100% for two class problem and 78.33-96.67% for three class problem that have been obtained in this work, this algorithm can be used in communication BCIs, to develop speech prosthesis and in synthetic telepathy systems.


2021 ◽  
pp. 155005942199712
Author(s):  
Géssika Araújo de Melo ◽  
Marcela Laís Lima Holmes Madruga ◽  
Nelson Torro

Introduction. The evaluation of individuals with fibromyalgia is challenging. Electroencephalography is a promising resource for identifying physiological biomarkers in fibromyalgia, contributing to its diagnosis. Objective. To review studies involving the use of electroencephalography to evaluate individuals with fibromyalgia. Method. A systematic review of studies published in the PubMed, Lilacs, and SciELO databases from 2001 to 2020 was conducted. The keywords used were electroencephalogram, electroencephalography, and fibromyalgia. The database search complied with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) criteria. Results. A total of 136 articles were identified after a database search using the keywords “fibromyalgia” AND “electroencephalography”, and 131 articles were found using the keywords “fibromyalgia” AND “electroencephalogram” (EEG). In the end, 20 articles remained after applying the exclusion criteria. The data was organized into subcategories related to the form of use, protocols, electroencephalographic findings in patients with fibromyalgia, and the EEG analysis method. Conclusion. Electroencephalography is a promising method for identifying and characterizing biomarkers for fibromyalgia.


2021 ◽  
Author(s):  
José Yauri ◽  
Aura Hernández-Sabaté ◽  
Paul Folch ◽  
Débora Gil

The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training. In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation.


Author(s):  
Morteza Zangeneh Soroush

The article's abstract is not available.  


2020 ◽  
Vol 20 (3) ◽  
pp. 149-153 ◽  
Author(s):  
Atul Maheshwari

In epilepsy research, the analysis of rodent electroencephalogram (EEG) has been performed by many laboratories with a variety of techniques. However, the acquisition and basic analysis of rodent EEG have only recently been standardized. Since a number of software platforms and increased computational power have become widely available, advanced rodent EEG analysis is now more accessible to investigators working with rodent models of epilepsy. In this review, the approach to the analysis of rodent EEG will be examined, including the evaluation of both epileptiform and background activity. Major caveats when employing these analyses, cellular and circuit-level correlates of EEG changes, and important differences between rodent and human EEG are also reviewed. The currently available techniques show great promise in gaining a deeper understanding of the complexities hidden within the EEG in rodent models of epilepsy.


Author(s):  
G.V. Kit

The method of analysis of electroencephalograms (EEG) on the basis of wavelet transformations is offered. Electroencephalogram (EEG) analysis is widely used in clinical practice for diagnosing such neurological diseases as epilepsy, Parkinson's disease and others. Traditional approaches to EEG analysis, generally accepted in the clinical diagnosis of diseases, are due to the fact that for a certain time after the stimulus, the EEG amplitudes are calculated at time intervals that depend on the frequency of signal quantization. Therefore, it is important to develop algorithms for classifying EEG signals using wavelet transforms. The analysis of peak-wave EEG discharges, which are indicators of the presence or absence of absence epilepsy, was performed. The EEG recording areas were decomposed into the main EEG frequency bands. Wavelet transform in combination with artificial neural networks makes it possible to implement a classifier based on the energy distribution of the components of the EEG signal. Determining the activity of individual components of EEG signals, as well as the materiality of the processes that take place in the sources of these waves, may be the subject of further research.


2021 ◽  
pp. 135-137
Author(s):  
O.I. Kharchenko ◽  
Yu.F. Lonin ◽  
L.P. Zabrodina ◽  
V.M. Kartashov

The paper describes the method for electroencephalogram (EEG) analysis based on the stochastic resonance (SR) effect. The numerical computation has provided the separation of low frequency components that fall within the δ-rhythm band. This is currently central in the neuropathology diagnostics, because the presence of low frequencies in the EEG is abnormal and bears witness to the disease. For verification, the data obtained with the use of the SR effect have been compared with the computations based on the autocorrelation function (ACF) processing. The comparison has shown their good agreement.


Sign in / Sign up

Export Citation Format

Share Document