On the Cauchy problem for implicit differential equations of higher orders

Author(s):  
Aram V. Arutyunov ◽  
Elena A. Pluzhnikova

The article is devoted to the study of implicit differential equations based on statements about covering mappings of products of metric spaces. First, we consider the system of equations Φ_i (x_i,x_1,x_2,…,x_n )=y_i, i=(1,n,) ̅ where 〖 Φ〗_i: X_i×X_1×… ×X_n→Y_i, y_i∈Y_i, X_i and Y_i are metric spaces, i=(1,n) ̅. It is assumed that the mapping 〖 Φ〗_i is covering in the first argument and Lipschitz in each of the other arguments starting from the second one. Conditions for the solvability of this system and estimates for the distance from an arbitrary given element x_0∈X to the set of solutions are obtained. Next, we obtain an assertion about the action of the Nemytskii operator in spaces of summable functions and establish the relationship between the covering properties of the Nemytskii operator and the covering of the function that generates it. The listed results are applied to the study of a system of implicit differential equations, for which a statement about the local solvability of the Cauchy problem with constraints on the derivative of a solution is proved. Such problems arise, in particular, in models of controlled systems. In the final part of the article, a differential equation of the n-th order not resolved with respect to the highest derivative is studied by similar methods. Conditions for the existence of a solution to the Cauchy problem are obtained.

Author(s):  
Zukhra T. Zhukovskaya ◽  
Sergey E. Zhukovskiy

We study the question of the existence of a solution to the Cauchy problem for a differential equation unsolved with respect to the derivative of the unknown function. Differential equations generated by twice continuously differentiable mappings are considered. We give an example showing that the assumption of regularity of the mapping at each point of the domain is not enough for the solvability of the Cauchy problem. The concept of uniform regularity for the considered mappings is introduced. It is shown that the assumption of uniform regularity is sufficient for the local solvability of the Cauchy problem for any initial point in the class of continuously differentiable functions. It is shown that if the mapping defining the differential equation is majorized by mappings of a special form, then the solution of the Cauchy problem under consideration can be extended to a given time interval. The case of the Lipschitz dependence of the mapping defining the equation on the phase variable is considered. For this case, estimates of non-extendable solutions of the Cauchy problem are found. The results are compared with known ones. It is shown that under the assumptions of the proved existence theorem, the uniqueness of a solution may fail to hold. We provide examples llustrating the importance of the assumption of uniform regularity.


2020 ◽  
Vol 70 (2) ◽  
pp. 71-76
Author(s):  
N.B. Iskakova ◽  
◽  
Zh. Kubanychbekkyzy ◽  

A linear boundary value problem for a system of ordinary differential equations containing a parameter is considered on a bounded segment. For a fixed parameter value, the Cauchy problem for an ordinary differential equation is solved. Using the fundamental matrix of differential part and assuming uniqueness solvability of the Cauchy problem an origin boundary value problem is reduced to the system of linear algebraic equation with respect to unknown parameter. The existence of a solution to this system ensures the existence of a solution to the boundary value problem under study. The algorithm of finding of solution for initial problem is offered based on a construction and solving of the linear algebraic equation. The basic auxiliary problem of algorithm is: the Cauchy problem for ordinary differential equations. The numerical implementation of algorithm offered in the article uses the method of Runge-Kutta of fourth order to solve the Cauchy problem for ordinary differential equations.


Author(s):  
Sarra Benarab

We consider the Cauchy problem for the implicit differential equation of order n g(t,x,(x,) ̇…,x^((n)) )=0,t ∈ [0; T],x(0)= A. It is assumed that A=(A_0,…,A_(n-1) )∈R^n, the function g:[0,T] × R^(n+1)→ R is measurable with respect to the first argument t∈[0,T], and for a fixed t, the function g(t,∙)×R^(n+1)→ R is right continuous and monotone in each of the first n arguments, and is continuous in the last n+1-th argument. It is also assumed that for some sufficiently smooth functions η,ν there hold the inequalities ν^((i) ) (0)≥ A_i ≥ η^((i) ) (0),i= (0,n-1,) ̅ ν^((n) ) (t)≥ η^((n) ) (t),t∈[0; T]; g(t; ν(t),ν ̇(t),...,ν^((n) ) (t) )≥ 0,g(t,η(t),η ̇(t),…,η^((n)) (t))≤ 0,t∈[0; T]. Sufficient conditions for the solvability of the Cauchy problem are derived as well as estimates of its solutions. Moreover, it is shown that under the listed conditions, the set of solutions satisfying the inequalities η^((n) ) (t)≤x^((n) ) (t)≤ν^((n) ) (t), is not empty and contains solutions with the largest and the smallest n -th derivative. This statement is similar to the classical Chaplygin theorem on differential inequality. The proof method uses results on the solvability of equations in partially ordered spaces. Examples of applying the results obtained to the study of second-order implicit differential equations are given.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Malkhaz Ashordia ◽  
Inga Gabisonia ◽  
Mzia Talakhadze

AbstractEffective sufficient conditions are given for the unique solvability of the Cauchy problem for linear systems of generalized ordinary differential equations with singularities.


2004 ◽  
Vol 4 (3) ◽  
Author(s):  
Franco Obersnel ◽  
Pierpaolo Omari

AbstractAn elementary approach, based on a systematic use of lower and upper solutions, is employed to detect the qualitative properties of solutions of first order scalar periodic ordinary differential equations. This study is carried out in the Carathéodory setting, avoiding any uniqueness assumption, in the future or in the past, for the Cauchy problem. Various classical and recent results are recovered and generalized.


Author(s):  
Tatiana F. Dolgikh

One of the mathematical models describing the behavior of two horizontally infinite adjoining layers of an ideal incompressible liquid under a solid cover moving at different speeds is investigated. At a large difference in the layer velocities, the Kelvin-Helmholtz instability occurs, which leads to a distortion of the interface. At the initial point in time, the interface is not necessarily flat. From a mathematical point of view, the behavior of the liquid layers is described by a system of four quasilinear equations, either hyperbolic or elliptic, in partial derivatives of the first order. Some type shallow water equations are used to construct the model. In the simple version of the model considered in this paper, in the spatially one-dimensional case, the unknowns are the boundary between the liquid layers h(x,t) and the difference in their velocities γ(x,t). The main attention is paid to the case of elliptic equations when |h|<1 and γ>1. An evolutionary Cauchy problem with arbitrary sufficiently smooth initial data is set for the system of equations. The explicit dependence of the Riemann invariants on the initial variables of the problem is indicated. To solve the Cauchy problem formulated in terms of Riemann invariants, a variant of the hodograph method based on a certain conservation law is used. This method allows us to convert a system of two quasilinear partial differential equations of the first order to a single linear partial differential equation of the second order with variable coefficients. For a linear equation, the Riemann-Green function is specified, which is used to construct a two-parameter implicit solution to the original problem. The explicit solution of the problem is constructed on the level lines (isochrons) of the implicit solution by solving a certain Cauchy problem for a system of ordinary differential equations. As a result, the original Cauchy problem in partial derivatives of the first order is transformed to the Cauchy problem for a system of ordinary differential equations, which is solved by numerical methods. Due to the bulkiness of the expression for the Riemann-Green function, some asymptotic approximation of the problem is considered, and the results of calculations, and their analysis are presented.


Sign in / Sign up

Export Citation Format

Share Document