scholarly journals Host defense peptides clavanins A and MO reduce in vitro osteoclastogenesis

2021 ◽  
Vol 20 ◽  
pp. e211512
Author(s):  
Ingrid Aquino Amorim ◽  
Stella Maris de Freitas Lima ◽  
Ana Paula de Castro Cantuária ◽  
Mirna de Souza Freire ◽  
Jeeser Alves de Almeida ◽  
...  

Aim: Several systemic diseases, such as periodontitis and apical periodontitis, can cause extensive bone resorption. Host defense peptides may have the potential for the development of novel therapies for the bone resorption process. This study evaluated the potential of host defense peptides clavanins A, MO, and LL-37 in in vitro osteoclastogenesis. Methods: RAW 264.7 cultures were stimulated with recombinant of receptor activator of nuclear factor kappa B ligand in the presence of different tested concentrations of host defense peptides, besides calcium hydroxide and doxycycline. Cellular viability, nitric oxide production, and a number of differentiated osteoclast-like cells were also evaluated. Results: Results showed that none of the substances were cytotoxic, except for 128 μg.mL-1 of doxycycline after 3 days. Host defense peptides, calcium hydroxide, and doxycycline did not interfere in nitric oxide production or downregulated it. An exception was observed in the presence of 2 μg.mL-1 of doxycycline, in which nitric oxide production was up-regulated. All host defense peptides were capable of reducing osteoclast-like cell differentiation. Conclusion: Host defense peptides clavanins A and MO demonstrated to be potential suppressors of osteoclastogenesis in vitro without interfering in cellular viability and nitric oxide production. These promising results need to be further analyzed in in vivo models of bone resorption.

2010 ◽  
Vol 137 (5) ◽  
pp. 665-670 ◽  
Author(s):  
Julia Cristina de Andrade Vitral ◽  
Marcelo Reis Fraga ◽  
Maria Aparecida de Souza ◽  
Ana Paula Ferreira ◽  
Robert Willer Farinazzo Vitral

2010 ◽  
Vol 137 (2) ◽  
pp. 247-253 ◽  
Author(s):  
Julia Cristina de Andrade Vitral ◽  
Marcelo Reis Fraga ◽  
Maria Aparecida de Souza ◽  
Ana Paula Ferreira ◽  
Robert Willer Farinazzo Vitral

2005 ◽  
Vol 173 (4S) ◽  
pp. 137-137
Author(s):  
Michael M. Ohebshalom ◽  
Stella K. Maeng ◽  
Jie Chen ◽  
Dix P. Poppas ◽  
Diane Felsen

2021 ◽  
Vol 23 ◽  
pp. 205-210
Author(s):  
Mayara Caldeira-Dias ◽  
Sarah Viana-Mattioli ◽  
Jackeline de Souza Rangel Machado ◽  
Mattias Carlström ◽  
Ricardo de Carvalho Cavalli ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 404
Author(s):  
Michael R. Yeaman ◽  
Liana C. Chan ◽  
Nagendra N. Mishra ◽  
Arnold S. Bayer

Streptococcus mitis-oralis (S. mitis-oralis) infections are increasingly prevalent in specific populations, including neutropenic cancer and endocarditis patients. S. mitis-oralis strains have a propensity to evolve rapid, high-level and durable resistance to daptomycin (DAP-R) in vitro and in vivo, although the mechanism(s) involved remain incompletely defined. We examined mechanisms of DAP-R versus cross-resistance to cationic host defense peptides (HDPs), using an isogenic S. mitis-oralis strain-pair: (i) DAP-susceptible (DAP-S) parental 351-WT (DAP MIC = 0.5 µg/mL), and its (ii) DAP-R variant 351-D10 (DAP MIC > 256 µg/mL). DAP binding was quantified by flow cytometry, in-parallel with temporal (1–4 h) killing by either DAP or comparative prototypic cationic HDPs (hNP-1; LL-37). Multicolor flow cytometry was used to determine kinetic cell responses associated with resistance or susceptibility to these molecules. While overall DAP binding was similar between strains, a significant subpopulation of 351-D10 cells hyper-accumulated DAP (>2–4-fold vs. 351-WT). Further, both DAP and hNP-1 induced cell membrane (CM) hyper-polarization in 351-WT, corresponding to significantly greater temporal DAP-killing (vs. 351-D10). No strain-specific differences in CM permeabilization, lipid turnover or regulated cell death were observed post-exposure to DAP, hNP-1 or LL-37. Thus, the adaptive energetics of the CM appear coupled to the outcomes of interactions of S. mitis-oralis with DAP and selected HDPs. In contrast, altered CM permeabilization, proposed as a major mechanism of action of both DAP and HDPs, did not differentiate DAP-S vs. DAP-R phenotypes in this S. mitis-oralis strain-pair.


2003 ◽  
Vol 31 (11) ◽  
pp. 1337-1346 ◽  
Author(s):  
Jose A. Adams ◽  
James E. Moore, Jr. ◽  
Michael R. Moreno ◽  
Jaqueline Coelho ◽  
Jorge Bassuk ◽  
...  

Planta Medica ◽  
2017 ◽  
Vol 83 (17) ◽  
pp. 1368-1373 ◽  
Author(s):  
Miao Dong ◽  
Li-Qiu Quan ◽  
Wei-Feng Dai ◽  
Shi-Li Yan ◽  
Chin-Ho Chen ◽  
...  

AbstractThree new compounds (1 – 3), including a sesterterpenoid, aspterpenacid C (1), with an unusual 5/3/7/6/5 pentacyclic skeleton, together with seven known ones (4 – 10), were isolated from the ethanol extract of the traditional Chinese medicinal plant Swertia bimaculata. Their structures were elucidated on the basis of the methods of spectroscopic NMR, MS, and computational chemistry. The structure of 1 was further confirmed by single-crystal X-ray diffraction analysis. Compounds 1 – 10 were tested for activities on the inhibition of nitric oxide production and HIV-1 replication in vitro. Compound 1 exhibited moderate activity in inhibiting nitric oxide production (IC50 = 16.1 µM) and HIV-1 replication (EC50 = 1.35 µM).


Sign in / Sign up

Export Citation Format

Share Document