scholarly journals Polymer flooding for enhanced oil recovery

Author(s):  
Marcelo Eduardo Novaes Freire Filho ◽  
Rosangela Barros Zanoni Lopes Moreno

In this work, Enhanced Oil Recovery methods were studied, with a focus on polymer flooding. Several works were surveyed to verify which parameters most affect the rheological behaviour of polymer solutions. Characteristics of reservoir rocks, important definitions of the oil industry and mathematical models of the rheology of viscous fluids were investigated as well.

2020 ◽  
Vol 10 (8) ◽  
pp. 3779-3789 ◽  
Author(s):  
Tina Coolman ◽  
David Alexander ◽  
Rean Maharaj ◽  
Mohammad Soroush

Abstract The economy of Trinidad and Tobago which mainly relies on its energy sector is facing significant challenges due to declining crude oil production in a low commodity price environment. The need for enhanced oil recovery (EOR) methods to meet the current and future energy demands is urgent. Studies on the use of polymer flooding in Trinidad and Tobago are limited, especially in terms of necessary data concerning the characterization of the adsorption of polymer flooding chemicals such as xanthan gum and aquagel polymers on different soil types in Trinidad and the viscosity characteristics of the polymer flooding solutions which affect the key attributes of displacement and sweep efficiency that are needed to predict recovery efficiency and the potential use of these flooding agents in a particular well. Adsorption and viscosity experiments were conducted using xanthan gum and aquagel on three different soil types, namely sand, Valencia clay (high iron) and Longdenville clay (low iron). Xanthan gum exhibited the lowest adsorption capacity for Valencia clay but absorbed most on sand at concentrations above 1000 ppm and Longdenville clay below 1000 ppm. At concentrations below 250 ppm, all three soil-type absorbent materials exhibited similar adsorption capacities. Aquagel was more significantly absorbed on the three soil types compared to xanthan gum. The lowest adsorption capacity was observed for Valencia clay at concentration levels above 500 ppm; however, the clay had the highest adsorption capacity below this level. Sand had the highest adsorption capacity for aquagel at concentrations above 500 ppm while Longdenville clay was the lowest absorbent above 500 ppm. Generally, all three soil types had a similar adsorption capacity for xanthan gum at a concentration level of 250 ppm and for aquagel at a concentration level of 500 ppm. The results offered conclusive evidence demonstrating the importance that the pore structure characteristics of soil that may be present in oil wells on its adsorption characteristics and efficiency. Xanthan gum polymer concentration of 2000 ppm, 1000 ppm and 250 ppm showed viscosities of 125 cp, 63 cp and 42 cp, respectively. Aquagel polymer concentrations of 2000 ppm, 1000 ppm and 250 ppm showed viscosities of 63 cp, 42 cp and 21 cp, respectively. Aquagel polymer solutions were found to generally have lower viscosities than the xanthan gum polymer solutions at the same concentration. Adsorption and viscosity data for the xanthan gum and aquagel polymers were incorporated within CMG numerical simulation models to determine the technical feasibility of implementing a polymer flood in the selected EOR 44 located in the Oropouche field in the southwest peninsula of the island of Trinidad. Overall, aquagel polymer flood resulted in a higher oil recovery of 0.06 STB compared to the xanthan gum polymer flood, so the better EOR method would be aquagel polymer flood. Additionally, both cases of polymer flooding resulted in higher levels of oil recovery compared to CO2 injection and waterflooding and therefore polymer flooding will have greater impact on the EOR 44 well oil recovery.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (2) ◽  
pp. 63-75
Author(s):  
Kamalakshi Devi ◽  
◽  
Ranjan Kumar Bhagobaty ◽  

Crude oil, a major source of energy, is being exploited as a driver of the economy throughout the world. Being a limited resource, the price of crude oil increases constantly and the exploitation of mature reservoirs becomes essential in order to meet the ever-increasing energy demands. As conventional recovery methods are not sufficient to fulfil the growing needs, there is an incessant demand for developing new technologies which can help in efficient tertiary recovery in old reservoirs. Petroleum biotechnology has been emerging as a branch that can provide solutions to major problems in the oil industry, including increasing oil production from marginal oil wells. The enhanced oil recovery (EOR) method comprises four methods – chemical, thermal, miscible, and immiscible gas flooding – as well as microbial interference to increase recovery of the remaining hydrocarbons trapped in reservoir rocks. Biochemically enhanced oil recovery comprises an array of blooming technologies for tertiary oil recovery methods which is eco-friendly, cost-effective, and efficient in extracting the residual oil trapped in reservoir rocks. Biochemical enhanced oil recovery (BcEOR) is based on the principle of using biochemical by-products produced by microbial species to enhance oil recovery, etc. All these technologies work on the principles of reducing viscosity, increasing permeability, modifying solid surfaces, emulsifying through adherence to hydrocarbons, and lowering interfacial tension. BcEOR technologies either employ the beneficial microorganism itself or the biochemical by-products produced by the microbial species to enhance tertiary oil recovery. This review paper discusses the chronological development of biologically enhanced oil recovery and its various mechanisms.


2017 ◽  
Vol 19 (4) ◽  
pp. 3337-3348
Author(s):  
Amer Al-Shareef ◽  
P. Neogi ◽  
Baojun Bai

Polymer flooding is an important process in enhanced oil recovery.


Author(s):  
A. A. Kazakov ◽  
V. V. Chelepov ◽  
R. G. Ramazanov

The features of evaluation of the effectiveness of flow deflection technologies of enhanced oil recovery methods. It is shown that the effect of zeroing component intensification of fluid withdrawal leads to an overestimation of the effect of flow deflection technology (PRP). Used in oil companies practice PRP efficiency calculation, which consists in calculating the effect on each production well responsive to subsequent summation effects, leads to the selective taking into account only the positive components of PRP effect. Negative constituents — not taken into account and it brings overestimate over to overstating of efficiency. On actual examples the groundless overstating and understating of efficiency is shown overestimate at calculations on applied in petroleum companies by a calculation.


2021 ◽  
Vol 48 (1) ◽  
pp. 169-178
Author(s):  
Xiangguo LU ◽  
Bao CAO ◽  
Kun XIE ◽  
Weijia CAO ◽  
Yigang LIU ◽  
...  

2021 ◽  
Vol 7 ◽  
pp. 960-967
Author(s):  
Mohammad Hossein Ahmadi ◽  
S.M. Alizadeh ◽  
Dmitry Tananykhin ◽  
Saba Karbalaei Hadi ◽  
Pavel Iliushin ◽  
...  

Author(s):  
A.N. Ivanov ◽  
◽  
M.M. Veliev ◽  
I.V. Vladimirov ◽  
E.A. Udalova ◽  
...  

2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Marzieh Riahinezhad ◽  
Laura Romero-Zerón ◽  
Neil McManus ◽  
Alexander Penlidis

Sign in / Sign up

Export Citation Format

Share Document