Spectral Method for Solving The General Form Linear Fredholm-Volterra Integro Differential Equations Based on Chebyshev Polynomials

2011 ◽  
Vol 1 (1,2) ◽  
pp. 1
Author(s):  
H. M. El-Hawary ◽  
T. S. El-Sheshtawy
2021 ◽  
Vol 15 ◽  
pp. 174830262110084
Author(s):  
Xianjuan Li ◽  
Yanhui Su

In this article, we consider the numerical solution for the time fractional differential equations (TFDEs). We propose a parallel in time method, combined with a spectral collocation scheme and the finite difference scheme for the TFDEs. The parallel in time method follows the same sprit as the domain decomposition that consists in breaking the domain of computation into subdomains and solving iteratively the sub-problems over each subdomain in a parallel way. Concretely, the iterative scheme falls in the category of the predictor-corrector scheme, where the predictor is solved by finite difference method in a sequential way, while the corrector is solved by computing the difference between spectral collocation and finite difference method in a parallel way. The solution of the iterative method converges to the solution of the spectral method with high accuracy. Some numerical tests are performed to confirm the efficiency of the method in three areas: (i) convergence behaviors with respect to the discretization parameters are tested; (ii) the overall CPU time in parallel machine is compared with that for solving the original problem by spectral method in a single processor; (iii) for the fixed precision, while the parallel elements grow larger, the iteration number of the parallel method always keep constant, which plays the key role in the efficiency of the time parallel method.


2020 ◽  
Vol 55 (3) ◽  
Author(s):  
Semaa Hassan Aziz ◽  
Mohammed Rasheed ◽  
Suha Shihab

Modified second kind Chebyshev polynomials for solving higher order differential equations are presented in this paper. This technique, along with some new properties of such polynomials, will reduce the original differential equation problem to the solution of algebraic equations with a straightforward and computational digital computer. Some illustrative examples are included. The modified second kind Chebyshev polynomial is calculated using only a small number of the modified second kind Chebyshev polynomials, which leads to attractive results.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Hassan A. Zedan ◽  
Seham Sh. Tantawy ◽  
Yara M. Sayed

Chebyshev spectral method based on operational matrix is applied to both systems of fractional integro-differential equations and Abel’s integral equations. Some test problems, for which the exact solution is known, are considered. Numerical results with comparisons are made to confirm the reliability of the method. Chebyshev spectral method may be considered as alternative and efficient technique for finding the approximation of system of fractional integro-differential equations and Abel’s integral equations.


Sign in / Sign up

Export Citation Format

Share Document