scholarly journals Combustion Chamber Design Effect on The Rotary Engine Performance - A Review

2020 ◽  
Vol 11 (4) ◽  
pp. 200-212
Author(s):  
Boughou Smail ◽  
AKM Mohiuddin
1998 ◽  
Vol 120 (1) ◽  
pp. 232-236 ◽  
Author(s):  
R. L. Evans ◽  
J. Blaszczyk

The work presented in this paper compares the performance and emissions of the UBC “Squish-Jet” fast-burn combustion chamber with a baseline bowl-in-piston (BIP) chamber. It was found that the increased turbulence generated in the fastburn combustion chambers resulted in 5 to 10 percent faster burning of the air–fuel mixture compared to a conventional BIP chamber. The faster burning was particularly noticeable when operating with lean air–fuel mixtures. The study was conducted at a 1.7 mm clearance height and 10.2:1 compression ratio. Measurements were made over a range of air–fuel ratios from stoichiometric to the lean limit. At each operating point all engine performance parameters, and emissions of nitrogen oxides, unburned hydrocarbons, and carbon monoxide were recorded. At selected operating points a record of cylinder pressure was obtained and analyzed off-line to determine mass-burn rate in the combustion chamber. Two piston designs were tested at wide-open throttle conditions and 2000 rpm to determine the influence of piston geometry on the performance and emissions parameters. The UBC squish-jet combustion chamber design demonstrates significantly better performance parameters and lower emission levels than the conventional BIP design. Mass-burn fraction calculations showed a significant reduction in the time to burn the first 10 percent of the charge, which takes approximately half of the time to burn from 10 to 90 percent of the charge.


2001 ◽  
Author(s):  
C. Beatrice ◽  
P. Belardini ◽  
C. Bertoli ◽  
N. Del Giacomo ◽  
Mna. Migliaccio

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Thirumal Valavan Harikrishnan ◽  
Suryanarayana Challa ◽  
Dachapalli Radhakrishna

This study was carried out with an objective to develop a 3D simulation methodology for rotary engine combustion study and to investigate the effect of recess shapes on flame travel within the rotating combustion chamber and its effects on engine performance. The relative location of spark plugs with respect to the combustion chamber has significant effect on flame travel, affecting the overall engine performance. The computations were carried out with three different recess shapes using iso-octane (C8H18) fuel, and flame front propagation was studied at different widths from spark location. Initially, a detailed leakage study was carried out and the flow fields were compared with available experimental results. The results for first recess with compression ratio 9.1 showed that the flow and vortex formations were similar to that of actual model. The capability of the 3D model to predict the combustion reaction rate precisely as that of practical engine is presented with comparison to experimental results. This study showed that the flame propagation is dominant toward the leading apex of the rotor chamber, and the air/fuel mixture region in the engine midplane, between the two spark plugs, has very low flame propagation compared to the region in the vicinity of spark. The air/fuel mixture in midplane toward the leading apex burns partially and most of the mixture toward the trailing apex is left unburnt. Recommendations have been made for optimal positioning of the spark plugs along the lateral axis of the engine. In the comparison study with different recess shapes, lesser cavity length corresponding to a higher compression ratio (CR) of 9.6 showed faster flame propagation toward leading side. Also, mass trapped in working chamber reduced and developed higher burn rate and peak pressure resulting in better fuel conversion efficiency. Third recess with lesser CR showed reduced burn rates and lower peak pressure.


Author(s):  
Balasaheb S. Dahifale ◽  
Anand S. Patil

The detailed investigation of flow behavior inside the combustion chamber and performance of engine is most challenging problem due to constraints in Experimental Data collection during testing; However, Experimental testing is essential for establishment of correlation with CFD Predictions. Hence, the baseline engine was tested at different load conditions and validated with CFD results, before it was optimized for performance improvement. The objective of the CFD Prediction was not only to optimize performance (Fuel Efficiency, Power, Torque, etc.) & Emissions Reduction, but also to assess feasibility of Performance Upgrade Potential. In the present CFD study, surface mesh and domain was prepared for the flame face, intake valve, intake valve seat, exhaust valve, exhaust valve seat and liner for closed volume cycle, between IVC and EVO using CFD code VECTIS. Finally simulations for three different load conditions were conducted using VECTIS solver. Initially, in-cylinder pressure vis a vis crank angle prediction was carried out for 100%, 75% and 50% load conditions. Then the fine tuning of (P-ϴ) diagram for different load conditions was conducted by varying different combustion parameters. Further, the engine performance validation was carried out for rated and part load conditions in terms of, IMEP, BMEP, break specific fuel consumption and power output, while NOx mass fractions were used to convert the NOx to g/kWh for comparison of emission levels with the test data. Finally optimized re-entrant combustion chamber and modified valve timing with optimum fuel injection system simulation was carried out to achieve target performance with reduced fuel consumption. A 3D CFD result showed reduction in BSFC and was in close agreement with the test data.


Author(s):  
P. L. Dartnell ◽  
C. L. Goodacre ◽  
P. V. Lamarque

A Heron combustion chamber engine of 2 litre capacity has been utilized to investigate the effect of combustion chamber shape, increased mixture movement, valve timing, mixture formation, and reaction in the exhaust system on engine performance and level of exhaust emissions using the seven-mode U.S. Federal cycle. Such factors as carburettor weakening and limitation of intake manifold vacuum during overrun have been included in this investigation, and it has been shown that it is possible to reduce exhaust emissions and also satisfy the current U.S. requirements with an engine giving acceptable performance, improved economy, and unaffected reliability. Much of the information reported may be negative in terms of improvement to exhaust emissions by detailed engine design. Nevertheless, some positive conclusions have been reached as a result of this work, and it is hoped that this will draw forth more informed discussion than the authors have been able to assemble from the work attempted with one basic engine.


Author(s):  
Baowei Fan ◽  
Yuanguang Wang ◽  
Jianfeng Pan ◽  
Yaoyuan Zhang ◽  
Yonghao Zeng

Abstract Apex seal leakage is one of the main defects restricting the performance improvement of rotary engines. The aim of this study is to study the airflow movement in a peripheral ported rotary engine under the action of apex seal leakage. For this purpose, a 3D dynamic calculation model considering apex seal leakage was firstly established and verified by particle image velocimetry data. Furthermore, based on the established 3D model, the flow field in the combustion chamber under the four apex seal leakage gaps (0.02, 0.04, 0.06 and 0.08 mms) and the three engine revolution speeds (2000, 3500, and 5000 RPMs) was calculated. By comparing with the flow field under the condition without leakage, the influences of the existence of apex seal leakage on the velocity field, the turbulent kinetic energy and the volumetric efficiency in the combustion chamber were investigated. Thereinto, the influences of the existence of apex seal leakage on the velocity field is that at the intake stroke, a vortex formed in the middle of the combustion chamber under the condition without apex seal leakage, was intensified by the apex seal leakage action. At the compression stroke, irrespective of the condition with or without apex seal leakage, all vortexes in the combustion chamber are gradually broken into a unidirectional flow. However, there is an obvious "leakage flow area" at the end of combustion chamber due to the existence of apex seal leakage.


Sign in / Sign up

Export Citation Format

Share Document