scholarly journals Trajectory Generation Using Model Predictive Control for Automated Vehicles

2021 ◽  
Vol 12 (1) ◽  
pp. 24-31
Author(s):  
Yoshiaki Irie ◽  
Daisuke Akasaka
2021 ◽  
Author(s):  
Jonas Berlin ◽  
Georg Hess ◽  
Anton Karlsson ◽  
William Ljungbergh ◽  
Ze Zhang ◽  
...  

This paper presents an approach to collision-free, long-range trajectory generation for a mobile robot in an industrial environment with static and dynamic obstacles. For the long range planning a visibility graph together with A* is used to find a collision-free path with respect to the static obstacles. This path is used as a reference path to the trajectory planning algorithm that in addition handles dynamic obstacles while complying with the robot dynamics and constraints. A Nonlinear Model Predictive Control (NMPC) solver generates a collision-free trajectory by staying close the initial path but at the same time obeying all constraints. The NMPC problem is solved efficiently by leveraging the new numerical optimization method Proximal Averaged Newton for Optimal Control (PANOC). The algorithm was evaluated by simulation in various environments and successfully generated feasible trajectories spanning hundreds of meters in a tractable time frame.


2019 ◽  
Vol 16 (4) ◽  
pp. 172988141986761 ◽  
Author(s):  
Haobin Jiang ◽  
Jie Zhou ◽  
Aoxue Li ◽  
Xinchen Zhou ◽  
Shidian Ma

With the rapid development of automated vehicles, there is currently a significant amount of automated driving research. Giving automated vehicles capabilities similar to those of experienced drivers will allow them to share the road harmoniously with manned vehicles, especially on two-lane urban curves. To represent the steering behavior of experienced drivers, a series of curve feature distances are proposed, which is determined by multi-regression. These series of curve feature distances are used to generate a trapezoidal steering angle model which imitates the steering behavior of the experienced test drivers. To verify the feasibility and human-likeness of the proposed trapezoidal steering angle model, the model is used with constant vehicle speed to plan a human-like trajectory which is tracked using model predictive control. The simulation results show that the proposed trapezoidal steering angle model is human-like and could be used to give automated vehicles human-like driving capability when driving on two-lane curves.


Sign in / Sign up

Export Citation Format

Share Document