scholarly journals Dinamika Tinggi Muka Air Tanah Pada Lahan Gambut Yang Terbakar

2019 ◽  
Vol 15 (1) ◽  
pp. 86
Author(s):  
Nur Wakhid ◽  
Siti Nurzakiah ◽  
Zainudin Zainudin

Seasonal fluctuations of water table depth are very important regarding the sustainable peat management on tropical peatland. Water level depth can affect the greenhouse gases emissions and as the main indicator for peat fire risk management. Therefore, direct measurement of water level dynamics in the peat burning area is absolutely necessary. The research objective was studied the water level fluctuations on burning peatland in Central Kalimantan, Indonesia. Water level measurement performed manually in the field and ditch, every week from February to December 2014. Water level from February to December 2014 were -86.6 and -51.9 cm, on the ditch and field, respectively. Peat soil water level was strongly correlated to the variations of rainfall.

2019 ◽  
Vol 6 (2) ◽  
pp. 74
Author(s):  
Sona Suhartana ◽  
Yuniawati Yuniawati

<p>A goal of timber harvesting is to increase timber production through removing the timber  from the forest using some harvesting techniques.  A peatland is a fragile ecosystem and may degraded easily. Logging activities may adversely affect the soil compactness that disrupt the peat drainage system as well as cause subsidence, then ultimately may cause the sustainability of peat.  This study was focused on examining the effect of timber harvesting acivities in peat forest plantation.  The peatland damage may in the form of increased bulk density, water level fluctuations of peat (TMA), subsidence, irreversible and carbon emissions.  The objective of the  study is to find out the effect of timber harvesting in peatland plantations to peat water fluctuations and subsidence.  The results showed that logging activites caused : (1) The average of water table and water level are about 1.03 and 0.967 m; and (2) Subsidence about -8 to -12.5 cm with the average is -11.0 cm. </p>


2020 ◽  
Vol 8 (3) ◽  
pp. 315
Author(s):  
Marinus Kristiadi Harun ◽  
Syaiful Anwar ◽  
Eka Intan Kumala Putri ◽  
Hadi Susilo Arifin

This study aims to: (1) determine the chemical properties of peat soils in 3 types of land cover in 2 physiographies; (2) find out water level fluctuations (WLF) on peat soils covered by agroforestry and horticulture in the physiography of peat dome and backswamp during the rainy season, transitions and drought. This research was conducted in January until December 2018 in Kahayan-Sebangau Peat Hidrological Unit, in the Kalampangan Vilagge. The results showed that differences in peat soil cover conditions at different physiographies affected chemical properties and WLF. The three types of peatland cover on both physiographic types of peatlands have a pH that categories into the very acid (<4.5). The results of this study indicate that nutrients (N, P, Kd, C, Mg, Al, Na and SO4) that are formed in each type of land cover in 2 physiographies indicate that these elements in peatlands are influenced by a layer of peat which obtains input of organic material from the plants above it. Peat fertility depends on the contribution of organic material from plants on it. Peatland cation exchange capacity values for all types are in the very high category (> 40). In addition to the chemical elements of the soil, the peat ground water level is highly volatile following rainfall so that during the peak of the dry season (MK) the WLF can reach 200 cm below the ground surface, and vice versa during the peak of the rainy season (MH) the WLF can inundate all peat soils.


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


1985 ◽  
Vol 11 (1) ◽  
pp. 179-183
Author(s):  
Jean-Luc Borel ◽  
Jacques-Léopold Brochier ◽  
Karen Lundström-Baudais

2020 ◽  
Vol 28 (9) ◽  
pp. 2027-2034
Author(s):  
Yue-jie SHU ◽  
◽  
Jun WU ◽  
Yuan-hang ZHOU ◽  
Yu-feng MA ◽  
...  

2007 ◽  
Vol 53 (6) ◽  
pp. 806-811 ◽  
Author(s):  
Yosuke Yanai ◽  
Koki Toyota ◽  
Tomoaki Morishita ◽  
Fumiaki Takakai ◽  
Ryusuke Hatano ◽  
...  

Geology ◽  
1975 ◽  
Vol 3 (8) ◽  
pp. 437 ◽  
Author(s):  
Robert L. Kovach ◽  
Amos Nur ◽  
Robert L. Wesson ◽  
Russell Robinson

Sign in / Sign up

Export Citation Format

Share Document