An investigation on the properties of woodcrete exposed to high temperature

2020 ◽  
Vol 11 (4) ◽  
pp. 105
Author(s):  
Mehmet Canbaz ◽  
İlkay Kara ◽  
İlker Bekir Topçu

By combining wood wastes with various binders, construction materials can be produced. These materials can be used in non-bearing parts such as wall block, insulation panel. In this study, prismatic specimens were taken from the mixtures produced considering the chip-cement ratio as 0.25, 0.5 and 1. The unit weight, ultrasonic pulse velocity, bending and compressive strengths of the specimens were determined by using the results of the experiments on these specimens. In addition, specimens were kept at 200 and 400°C for 3 hours in order to determine its behavior under high temperature, which is one of the most important problems for wood composites. With the experiments carried out on the cooled specimens, weight and strength losses, changes in ultrasonic pulse velocity were examined. As a result of the study, while determining that the chip-cement ratio can be used as 1, it is recommended to use the chip-cement ratio up to 0.5 when the high temperature effect is taken into consideration.

2019 ◽  
Vol 5 (3) ◽  
pp. 80
Author(s):  
Hasan Selim Şengel ◽  
Mehmet Canbaz ◽  
Ersin Güler

Khorasan mortar was used in almost all of the historical structures in the geographical area of turkey. It is still used in the renovation of these structures. Water, lime, baked clay is used in the production of Khorasan by breaking and grinding. Crushed brick and tiles are preferred as baked clay. In this study, the usability of ceramic wastes as baked clay was investigated. An important part of ceramic production is made especially in Eskişehir and its vicinity. 10% of ceramic production shows up as wastes because of various reasons. These wastes which are under 20 mm are crushed in the jaw breakers and these which are under 150 mm are grinned in grinders, transformed to powder and then mixed with hydrated lime and water in various proportions, in this way Khorasan mortars are obtained. In mortar production, crushed ceramic-ceramic powder ratio, ceramic-lime ratio were changed and the most suitable ratios were tried to be found. Samples taken from these mortars which are 4 cm x 4 cm x 16 cm in size are removed after a day from the mold and kept in humid environment. Physical and mechanical properties such as unit weight, ultrasonic pulse velocity, bending strength, compressive strength of the mortar were determined. As a result of the experiments, the unit weights range was between 1.5–1.65 kg/dm3, the ultrasonic pulse velocity rates range from 1.3–1.9 km/h, the range of bending strengths was from 0.25–1.05 MPa, and compressive strength has changed in the range of 7.5–10.5 MPa. With the work done, it is recommended to use a high percentage of lime while using ceramic wastes in the process of producing Khorasan mortar.


2018 ◽  
Vol 3 (1) ◽  
pp. 31
Author(s):  
Belaribi Hassiba ◽  
Mellas Mekki ◽  
Rahmani Fraid

The paper analyses the effects of high temperatures on the concrete residual strength using ultrasonic velocity (UPV). An experimental investigation was conducted to study the relationship between UPV residual data and compressive strength of concrete with different mixture proportions, cubic specimens with water-cement ratio of 0.35. They were heated in an electric furnace at temperatures ranging from 200°C to 600°C. In this experiment a comparison was made between the four groups which include two types of fibers steel 0,19%, 0,25% and 0,5%, polypropylene: 0,05%, 0,11% 0,16 % by volume. Cube specimens were tested in order to determine ultrasonic velocity. The compressive strength was tested too. According to the results, relations were established between ultrasonic velocity in the specimens and the compressive strength at different temperature and the range of the velocity of the waves were also determined for this kind of concrete. Result of the test showed that UPV test can be successfully used in order to verify the consistency of structures damaged by fire.


2021 ◽  
Vol 7 (1) ◽  
pp. 42
Author(s):  
Mehmet Canbaz ◽  
İlkay Kara ◽  
İlker Bekir Topçu

The increase in the population day by day and urbanization has led to a rapid increase in the construction sector. With the increase in demand in construction, the product types of building materials are increasing. It is seen that wastes are formed during and after the production of the materials used in the building. This highlights studies on waste management and recycling of waste.  After construction activities, wastes are recycled or converted to secondary products. One of these is wood waste, a traditional building material. In addition to the production of wood furniture, it is used in various areas from the beginning of construction to the end of the building. In this study, sawdust, which is the waste of a woodworking company, was used. Utilizing the advantages of wood, recyclable and sustainable cement bonded wood composite production practices have been explored. It is aimed to produce nature and environment friendly, ecological and economic and durable composite materials. In this research, it is aimed to determine the optimum ratio by using different ratios of sawdust-cement while keeping the water-cement ratio constant in production. The specimens taken from the production were exposed to high temperature after gaining strength. The strength results, unit weights and ultrasonic pulse velocity results of cement bonded wood composite samples exposed to high temperature were examined. Although cement bonded wood composites are exposed to high temperatures such as 400°C, it has been observed that strength is achieved. With this study, an alternative area was proposed for the evaluation of these wastes.


Author(s):  
Christopher Collins ◽  
Saman Hedjazi

In the present study, a non-destructive testing method was utilized to assess the mechanical properties of lightweight and normal-weight concrete specimens. The experiment program consisted of more than a hundred concrete specimens with the unit weight ranging from around 850 to 2250 kg/m3. Compressive strength tests were performed at the age of seven and twenty eight days. Ultrasonic Pulse Velocity (UPV) was the NDT that was implemented in this study to investigate the significance of the correlation between UPV and compressive strength of lightweight concrete specimens. Water to cement ratio (w/c), mix designs, aggregate volume, and the amount of normal weight coarse and fine aggregates replaced with lightweight aggregate, are the variables in this work. The lightweight aggregate used in this study, Poraver®, is a product of recycled glass materials. Furthermore, the validity of the current prediction methods in the literature was investigated including comparison between this study and an available expression in the literature on similar materials, for calculation of mechanical properties of lightweight concrete based on pulse velocity. It was observed that the recently developed empirical equation would better predict the compressive strength of lightweight concrete specimens in terms of the pulse velocity.


2021 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Mehmet Canbaz ◽  
Erman Acay

The effect of high temperature on self-compacting concrete, which contains different amounts of fly ash, has been investigated. By considering the effect of concrete age and increased temperatures, the optimum fly ash-cement ratio for the optimum concrete strength is determined using experimental studies. Self-compacting concrete specimens are produced, with fly ash/cement ratios of 0%, 20% and 40%. Specimens were cured for 28, 56 and 90 days. After curing was completed, the specimens were subjected to temperatures of 20°C, 100°C, 400°C, 700°C and 900°C for three hours. After the cooling process, tests were performed to determine the unit weight, ultrasonic pulse velocity and compressive strength of the specimens. According to the experiment results, an increase in fly ash ratio causes a decrease in the compressive strength of self-compacting concrete. However, it positively contributes to self-compaction and strength loss at high temperatures. The utilization of fly ash in concrete significantly contributes to the environment and the economy. For this reason, the addition of 20% fly ash to concrete is considered to be effective.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Syed Mofachirul Islam ◽  
Roslan Hashim ◽  
A. B. M. Saiful Islam ◽  
Ryan Kurnia

The popularity of low cost, lightweight, and environmentally affable masonry unit in building industry carries the need to investigate more flexible and adaptable brick component as well as to retain the requirements confirmed in building standards. In this study, potential use of local materials used as lightweight building materials in solving the economic problems of housing has been investigated. Experimental studies on peat added bricks have been carried out. It demonstrates the physicomechanical properties of bricks and investigates the influence of peat, sand, and cement solid bricks to the role of various types of constructional applications. The achieved compressive strength, spitting strength, flexural strength, unit weight, and ultrasonic pulse velocity are significantly reduced and the water absorption is increased with percentage wise replacement of peat as aggregate in the samples. The maximum 20% of (% mass) peat content meets the requirements of relevant well-known international standards. The experimental values illustrate that, the 44% volumetric replacement with peat did not exhibit any sudden brittle fracture even beyond the ultimate loads and a comparatively smooth surface is found. The application of peat as efficient brick substance shows a potential to be used for wall and a viable solution in the economic buildings design.


2017 ◽  
Vol 26 (1-2) ◽  
pp. 55-63 ◽  
Author(s):  
Anastasia Sotiropoulou ◽  
Stamatia Gavela ◽  
Nikolaos Nikoloutsopoulos ◽  
Dimitra Passa ◽  
Georgios Papadakos

AbstractIn the frame of an extended research program dealing with wood shavings utilization in mortar, a set of procedures were developed for verifying effects of wood shavings addition to specific mortar properties. Mixes containing wood shavings replacing fine aggregates by 0, 30, 50 and 70% of their volume were made. Workability, fresh mortar unit weight, ultrasonic pulse velocity (UPV) and flexural and compressive strength were determined, based on measurements, at various curing ages. Measurement results and analysis suggest that compressive strength reduction caused by wood shavings addition could be predicted. The outcome was standardized in the form of a multifactorial sigmoidal model. It was also made evident that the mix proportion of cement increases when wood shavings are used as a by volume replacement of conventional fine aggregates, due to the low value of specific gravity of wood compared to conventional aggregates. Another procedure is suggested based on mass and volume measurements aiming at the verification of the mix proportions in the final mortar mixture.


Sign in / Sign up

Export Citation Format

Share Document