scholarly journals Effect of Peat on Physicomechanical Properties of Cemented Brick

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Syed Mofachirul Islam ◽  
Roslan Hashim ◽  
A. B. M. Saiful Islam ◽  
Ryan Kurnia

The popularity of low cost, lightweight, and environmentally affable masonry unit in building industry carries the need to investigate more flexible and adaptable brick component as well as to retain the requirements confirmed in building standards. In this study, potential use of local materials used as lightweight building materials in solving the economic problems of housing has been investigated. Experimental studies on peat added bricks have been carried out. It demonstrates the physicomechanical properties of bricks and investigates the influence of peat, sand, and cement solid bricks to the role of various types of constructional applications. The achieved compressive strength, spitting strength, flexural strength, unit weight, and ultrasonic pulse velocity are significantly reduced and the water absorption is increased with percentage wise replacement of peat as aggregate in the samples. The maximum 20% of (% mass) peat content meets the requirements of relevant well-known international standards. The experimental values illustrate that, the 44% volumetric replacement with peat did not exhibit any sudden brittle fracture even beyond the ultimate loads and a comparatively smooth surface is found. The application of peat as efficient brick substance shows a potential to be used for wall and a viable solution in the economic buildings design.

2021 ◽  
Vol 7 (1) ◽  
pp. 42
Author(s):  
Mehmet Canbaz ◽  
İlkay Kara ◽  
İlker Bekir Topçu

The increase in the population day by day and urbanization has led to a rapid increase in the construction sector. With the increase in demand in construction, the product types of building materials are increasing. It is seen that wastes are formed during and after the production of the materials used in the building. This highlights studies on waste management and recycling of waste.  After construction activities, wastes are recycled or converted to secondary products. One of these is wood waste, a traditional building material. In addition to the production of wood furniture, it is used in various areas from the beginning of construction to the end of the building. In this study, sawdust, which is the waste of a woodworking company, was used. Utilizing the advantages of wood, recyclable and sustainable cement bonded wood composite production practices have been explored. It is aimed to produce nature and environment friendly, ecological and economic and durable composite materials. In this research, it is aimed to determine the optimum ratio by using different ratios of sawdust-cement while keeping the water-cement ratio constant in production. The specimens taken from the production were exposed to high temperature after gaining strength. The strength results, unit weights and ultrasonic pulse velocity results of cement bonded wood composite samples exposed to high temperature were examined. Although cement bonded wood composites are exposed to high temperatures such as 400°C, it has been observed that strength is achieved. With this study, an alternative area was proposed for the evaluation of these wastes.


2021 ◽  
Vol 13 (4) ◽  
pp. 1881
Author(s):  
Mei-Yu Xuan ◽  
Yi Han ◽  
Xiao-Yong Wang

This study examines the hydration–mechanical–autogenous shrinkage–durability–sustainability properties of ternary composites with limestone filler (LF) and ground-granulated blast furnace slag (BFS). Four mixtures were prepared with a water/binder ratio of 0.3 and different replacement ratios varying from 0 to 45%. Multiple experimental studies were performed at various ages. The experimental results are summarized as follows: (1) As the replacement levels increased, compressive strength and autogenous shrinkage (AS) decreased, and this relationship was linear. (2) As the replacement levels increased, cumulative hydration heat decreased. At the age of 3 and 7 days, there was a linear relationship between compressive strength and cumulative hydration heat. (3) Out of all mixtures, the ultrasonic pulse velocity (UPV) and electrical resistivity exhibited a rapid increase in the early stages and tended to slow down in the latter stages. There was a crossover of UPV among various specimens. In the later stages, the electrical resistivity of ternary composite specimens was higher than plain specimens. (4) X-ray diffraction (XRD) results showed that LF and BFS have a synergistic effect. (5) With increasing replacement ratios, the CO2 emissions per unit strength reduced, indicating the sustainability of ternary composites.


2021 ◽  
Vol 877 (1) ◽  
pp. 012049
Author(s):  
Ali Abdulridha ◽  
Saif S. AlQuzweeni ◽  
Rasha S. AlKizwini ◽  
Zahra A. Saleh ◽  
K. S. Hashem

Abstract Various experimental studies have highlighted the negative consequences of Portland cement on health and the environment, such as toxic emissions and alkaline sewage. The development of environmentally acceptable substitutes for cement is thus one of the objectives of current investigations. The proposed environmental alternatives to cement, nevertheless, might have detrimental impacts on the concrete’s characteristics. This investigation intends to study the suitability as alternatives to cement in cement mortar, using industrial wastes like silica fume and cement kiln dust. As a replacement for cement, the cement mortars developed in this research continue from 0% to 60% silica fume and cement kiln dust. Ultrasonic pulse velocity tests at 1 to 4 weeks of age were conducted on hardened specimens. The findings showed that a low reduction in the pulse velocity resulted from high proportions of silica fume and cement kiln dust replacements, whereas an improvement in the characteristics of the mortars with low replacement ratios. Using low kiln dust and silica fume of 20 to 40%, the durability of mortars may increase.


2019 ◽  
Vol 5 (3) ◽  
pp. 80
Author(s):  
Hasan Selim Şengel ◽  
Mehmet Canbaz ◽  
Ersin Güler

Khorasan mortar was used in almost all of the historical structures in the geographical area of turkey. It is still used in the renovation of these structures. Water, lime, baked clay is used in the production of Khorasan by breaking and grinding. Crushed brick and tiles are preferred as baked clay. In this study, the usability of ceramic wastes as baked clay was investigated. An important part of ceramic production is made especially in Eskişehir and its vicinity. 10% of ceramic production shows up as wastes because of various reasons. These wastes which are under 20 mm are crushed in the jaw breakers and these which are under 150 mm are grinned in grinders, transformed to powder and then mixed with hydrated lime and water in various proportions, in this way Khorasan mortars are obtained. In mortar production, crushed ceramic-ceramic powder ratio, ceramic-lime ratio were changed and the most suitable ratios were tried to be found. Samples taken from these mortars which are 4 cm x 4 cm x 16 cm in size are removed after a day from the mold and kept in humid environment. Physical and mechanical properties such as unit weight, ultrasonic pulse velocity, bending strength, compressive strength of the mortar were determined. As a result of the experiments, the unit weights range was between 1.5–1.65 kg/dm3, the ultrasonic pulse velocity rates range from 1.3–1.9 km/h, the range of bending strengths was from 0.25–1.05 MPa, and compressive strength has changed in the range of 7.5–10.5 MPa. With the work done, it is recommended to use a high percentage of lime while using ceramic wastes in the process of producing Khorasan mortar.


Author(s):  
Christopher Collins ◽  
Saman Hedjazi

In the present study, a non-destructive testing method was utilized to assess the mechanical properties of lightweight and normal-weight concrete specimens. The experiment program consisted of more than a hundred concrete specimens with the unit weight ranging from around 850 to 2250 kg/m3. Compressive strength tests were performed at the age of seven and twenty eight days. Ultrasonic Pulse Velocity (UPV) was the NDT that was implemented in this study to investigate the significance of the correlation between UPV and compressive strength of lightweight concrete specimens. Water to cement ratio (w/c), mix designs, aggregate volume, and the amount of normal weight coarse and fine aggregates replaced with lightweight aggregate, are the variables in this work. The lightweight aggregate used in this study, Poraver®, is a product of recycled glass materials. Furthermore, the validity of the current prediction methods in the literature was investigated including comparison between this study and an available expression in the literature on similar materials, for calculation of mechanical properties of lightweight concrete based on pulse velocity. It was observed that the recently developed empirical equation would better predict the compressive strength of lightweight concrete specimens in terms of the pulse velocity.


Buildings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 202 ◽  
Author(s):  
Ivan Ivanchev ◽  
Veselin Slavchev

Failures occur in the structures of reinforced concrete buildings and facilities during their continuous exploitation, without being overloaded or exposed to extreme impacts, the most common being cracks. Their detection and change in time are related to the assessment of the state of the structures, their safety, and reliability during their construction and especially for their safety exploitation. This paper describes the results of the experimental studies conducted by authors aiming to verify the possibility of using the non-destructive ultrasonic pulse velocity method (NDUPVM) for detection and evaluation of cracks. Results of an experimental study of 12 reinforced concrete beams are presented. In previous experiments, some of them were subjected to bending until the maximum crack width of 0.3 mm was reached and others until yielding of the longitudinal reinforcement. The results obtained from the measurements of the depths of the normal cracks with different widths with NDUPVM were compared with the visually measured ones. In the present research cracks with the same width and with a similar depth were chosen. The influence of extreme external conditions to the accuracy of the measured crack depths by the NDUPVM was investigated. Non-destructive ultrasonic research was done by a portable device Proceq TICO.


2017 ◽  
Vol 10 (2) ◽  
pp. 358-385 ◽  
Author(s):  
D.S. ADAMATTI ◽  
A. LORENZI ◽  
J. A. CHIES ◽  
L.C.P. SILVA FILHO

Abstract The application of Nondestructive Testing methods (NDT) may be an interesting strategy to monitor the condition state of reinforced concrete structures, especially when there are problems related to mixing, conveying or placing the concrete. Among the NDT methods, the Ultrasonic Pulse Velocity (UPV) has been one of the most used in various fields of civil engineering, due to the ease of operation, low cost, test velocity and low level of damage to the surface analyzed. This work aims to study the influence of certain technological variables in the results obtained through UPV tests. With this aim two large blocks were cast at the laboratory, with dimensions close to real concrete elements. One of the elements was reinforcement with steel meshes on both sides while the other was cast without reinforcement. Inside these elements objects were introduced to reproduce internal concrete flaws. To facilitate the analysis the results were represented by means of a surface mapping image technique and were also subjected to statistical analysis. Through the study it was demonstrated that the correct choice of test parameters is crucial to obtain a right interpretation of UPV results from real structures.


2019 ◽  
Vol 11 (0) ◽  
pp. 1-5
Author(s):  
Deividas Augutis ◽  
Džigita Nagrockienė

Materials used for the study: Portland cement CEM I 42,5 R, 0/4 fraction sand, 4/16 fraction gravel, biofuel fly ash, superplastizer ViscoCrete D187 (V) and water. Seven compositions of concrete were designed by replacing 0%, 5%, 10%, 15%, 20%, 25% and 30% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. Studies have shown that the increase of biofuel fly ash content up to 15% increases concrete density and compressive strengh after 28 days of curing, compressive strength, ultrasonic pulse velocity, closed porosity, concrete forecasted freeze-thaw cycles and decreases water absorbtion, open porosity.


2021 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Mehmet Canbaz ◽  
Erman Acay

The effect of high temperature on self-compacting concrete, which contains different amounts of fly ash, has been investigated. By considering the effect of concrete age and increased temperatures, the optimum fly ash-cement ratio for the optimum concrete strength is determined using experimental studies. Self-compacting concrete specimens are produced, with fly ash/cement ratios of 0%, 20% and 40%. Specimens were cured for 28, 56 and 90 days. After curing was completed, the specimens were subjected to temperatures of 20°C, 100°C, 400°C, 700°C and 900°C for three hours. After the cooling process, tests were performed to determine the unit weight, ultrasonic pulse velocity and compressive strength of the specimens. According to the experiment results, an increase in fly ash ratio causes a decrease in the compressive strength of self-compacting concrete. However, it positively contributes to self-compaction and strength loss at high temperatures. The utilization of fly ash in concrete significantly contributes to the environment and the economy. For this reason, the addition of 20% fly ash to concrete is considered to be effective.


Sign in / Sign up

Export Citation Format

Share Document