From the carrier of active substance to drug delivery systems

2017 ◽  
Vol 86 (3) ◽  
pp. 231
Author(s):  
Barbara Jadach

Development and innovation all the time are in interests of pharmaceutical science and evaluation of different dosage forms. They are concerned with the aim of compliance of patients. All the time different research groups try to develop and improve form of drugs to receive better bioavailability or strict control of dose, place and time of action of active substances. This is possible by using different excipients; biodegradable, biocompatible polymers that work like a carriers; developing simple drug delivery systems, which in time became more and more complicated; nanotechnology that control size, shape and multi-functionality of particulate drug delivery systems. This review shows the main points in the evaluation of pharmaceutical researches from simple carriers of active substances to drug delivery systems.

Author(s):  
Bibhu Prasad Panda ◽  
N.S Dey ◽  
M.E.B. Rao

Over the past few decades, there has been an increased interest for innovative drug delivery systems to improve safety, efficacy and patient compliance, thereby increasing the product patent life cycle. The discovery and development of new chemical entities is not only an expensive but also time consuming affair. Hence the pharmaceutical industries are focusing on the design and development of innovative drug delivery systems for existing drugs. One such delivery system is the fast disintegrating oral film, which has gained popularity among pediatric and geriatric patients. This fast disintegrating film with many potential benefits of a fast disintegrating tablet but devoid of friability and risk of choking is more acceptable to pediatric and geriatric patients. Formulation of fast disintegrating film can be achieved by various techniques, but common methods of preparation include spraying and casting. These film forming techniques use hydrophilic film former in combination with suitable excipients, which allow the film to disintegrate or dissolve quickly in the mouth within a few seconds without the administration of water. In view of the advantages of the fast disintegrating films over the fast disintegrating tablets and other dosage forms, it has the potential for commercial exploitation. The oral film dosage form not only has certain advantages of other fast disintegrating systems but also satisfies the unmet needs of the market. The present review emphasizes on the potential benefits, design and development of robust, stable, and innovative orally fast- disintegrating films and their future scenarios on a global market as a pharmaceutical dosage form.  


2020 ◽  
Vol 16 ◽  
Author(s):  
Cansel Kose Ozkan ◽  
Ozgur Esim ◽  
Ayhan Savaser ◽  
Yalcin Ozkan

: The content and the application of pharmaceutical dosage forms must meet several basic requirements to ensure and maintain efficiency, safety and quality. A large number of active substances have limited ability to direct administration. Excipients are generally used to overcome the limitation of direct administration of these active substances. However, the function, behavior and composition of the excipients need to be well known in the design, development and production of pharmaceutical dosage forms. In this review, excipients used to assist in any pharmaceutical dosage form production processes of drugs, to preserve, promote or increase stability, bioavailability and patient compliance, to assist in product identification / separation, or to enhance overall safety and effectiveness of the drug delivery system during storage or use are explained. Moreover, the use of these excipients in drug delivery systems are identified. Excipient toxicity, which is an issue discussed in the light of current studies, also discussed in this review.


2021 ◽  
Author(s):  
Alla Krasnoshtanova ◽  
Anastasiya Bezyeva

"The oral route of drug inclusion is the most convenient for the patient. In addition to ease of use, this method of drug inclusion has such advantages as non-invasiveness of inclusion, absence of complications during injection; comparative safety for the organism due to the passage of the active substance and auxiliary compounds through the gastrointestinal tract; the possibility of introducing larger doses of the drug at one time. However, despite the obvious advantages, the oral route of inclusion has a number of significant disadvantages that significantly limit its use for a number of drugs. Among them are: relatively slow therapeutic action of the drug with this route of inclusion; the aggressive effect of a number of drugs (for example, antibiotics) on the gastrointestinal tract; low bioavailability of a number of substances (especially high molecular weight hydrophilic compounds), caused by poor permeability of the intestinal epithelium for hydrophilic and large molecules, as well as enzymatic and chemical degradation of the active substance in the gastrointestinal tract. There are various approaches used in the development of oral drug delivery systems. In particular, for the targeted delivery of drugs, it is proposed to use nano- and microcapsules with mucoadhesive properties. Among the polymers used for the synthesis of these microparticles, it is preferable to use pH-dependent, gelable biopolymers that change their structure depending on the acidity of the environment. Microcapsules obtained from compounds with the above properties are capable of protecting the active substance (or from the active substance) in the stomach environment and ensuring its release in the intestine. These properties are possessed by such polysaccharides as alginate, pectin, carrageenan, xylan, etc. The listed biopolymers are non-toxic, biocompatible, and biodegradable, which makes microparticles containing these polysaccharides promising as oral drug delivery systems. To impart mucoadhesive properties to nanoparticles, complexes of the listed polymers with chitosan are used. In this research, pectin, a polysaccharide formed mainly by residues of galacturonic acid, was used as a structural polymer. The concentrations of substances in the initial solutions were selected that were optimal for the synthesis of microcapsules. The main parameters for evaluating the resulting microparticles were the size of the capsules (less than 1 μm for oral inclusion), the zeta-potential, showing the tendency of the microparticles to stick together, and the completeness of the binding of the microparticles to chitosan. It was found that the optimal solutions for the synthesis of microparticles are: 15.7 ml of a solution of pectin 0.093% by weight, 3.3 ml of a solution of chitosan 0.07% by weight and 1.0 ml of a solution of CaCl2 20 mM. The diameter of the microparticles obtained by this method was 700-800 nm, and the value of their zetta-potential, equal to - (34 ± 3) mV, does not cross the particle adhesion threshold. It was also found that the synthesis of microparticles at these concentrations of calcium chloride provides the most complete binding of chitosan to their surface, which increases the mucoadhesive properties of microparticles."


Author(s):  
Satbir Singh ◽  
Tarun Virmani ◽  
Reshu Virmani ◽  
Geeta Mahlawat ◽  
Pankaj Kumar

The Fast Dissolving Drug Delivery Systems sets a new benchmark was an expansion that came into existence in the early 1980’s and combat over the use of the different dosage form like tablets, suspension, syrups, capsules which are the other oral drug delivery systems. Fast Dissolving Drug Delivery System (FDTS)  has a major advantage over the conventional dosage forms since the drug gets rapidly disintegrated and dissolves in the saliva without the use of water .In spite of the downside lack of immediate onset of action; these oral dosage forms have valuable purposes such as self medication, increased patient compliance, ease of manufacturing and lack of pain. Hence Fast Disintegrating Tablets (FDTS) technology has been gaining importance now-a-days with wide variety of drugs serving many purposes. Fast Disintegrating Tablets (FDTS) has ever increased their demand in the last decade since they disintegrate in saliva in less than a minute that improved compliance in pediatrics and geriatric patients, who have difficulty in swallowing tablets or liquids. As fast dissolving tablet provide instantaneous disintegration after putting it on tongue, thereby rapid drug absorption and instantaneous bioavailability, whereas Fast dissolving oral films are used as practical alternative to FDTS. These films have a potential to deliver the drug systemically through intragastric, sublingual or buccal route of administration and also has been used for local action. In present review article different aspects of fast dissolving  tablets and films like method of preparations, latest technologies, evaluation parameters are discussed. This study will be useful for the researchers for their lab work.  


Sign in / Sign up

Export Citation Format

Share Document