scholarly journals Yield design solutions to bearing capacity of a column-reinforced soil foundation under inclined loading

Author(s):  
María Alicia Arévalos Burró ◽  
Samir Maghous
PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243293
Author(s):  
Noor Ibrahim Hasan ◽  
Aizat Mohd Taib ◽  
Nur Shazwani Muhammad ◽  
Muhamad Razuhanafi Mat Yazid ◽  
Azrul A. Mutalib ◽  
...  

The main cause of problematic soil failure under a certain load is due to low bearing capacity and excessive settlement. With a growing interest in employing shallow foundation to support heavy structures, it is important to study the soil improvement techniques. The technique of using geosynthetic reinforcement is commonly applied over the last few decades. This paper aims to determine the effect of using geogrid Tensar BX1500 on the bearing capacity and settlement of strip footing for different types of soils, namely Al-Hamedat, Ba’shiqah, and Al-Rashidia in Mosul, Iraq. The analysis of reinforced and unreinforced soil foundations was conducted numerically and analytically. A series of conditions were tested by varying the number (N) and the width (b) of the geogrid layers. The results showed that the geogrid could improve the footing’s bearing capacity and reduce settlement. The soil of the Al-Rashidia site was sandy and indicated better improvement than the other two sites’ soils (clayey soils). The optimum geogrid width (b) was five times the footing width (B), while no optimum geogrid number (N) was obtained. Finally, the numerical results of the ultimate bearing capacity were compared with the analytical results, and the comparison showed good agreement between both the analyses and the optimum range published in the literature. The significant findings reveal that the geogrid reinforcement may induce improvement to the soil foundation, however, not directly subject to the width and number of the geogrid alone. The varying soil properties and footing size also contribute to both BCR and SRR values supported by the improvement factor calculations. Hence, the output complemented the benefit of applying reinforced soil foundations effectively.


2021 ◽  
Vol 11 (7) ◽  
pp. 2973
Author(s):  
Gampanart Sukmak ◽  
Patimapon Sukmak ◽  
Suksun Horpibulsuk ◽  
Menglim Hoy ◽  
Arul Arulrajah

This research investigated the effects of types of cohesive-frictional soil and geotextile reinforcement configurations on the bearing capacity of reinforced soil foundation (RSF) structures, via laboratory test and numerical simulation. The four reinforcement configurations studied for the RSF included: (i) horizontal planar form of geotextile, (ii) full-wraparound ends of geotextile, (iii) full-wraparound ends of geotextile with filled-in sand, and (iv) full-wraparound ends of geotextile with filled-in sand and sand backfill. The foundation soils studied were mixtures of fine sand and sodium bentonite at replacement ratios of 0, 20, 40, 60, 80, and 100% by dry weight of sand to have various values of plasticity index (PI). The numerical analysis of RSF structures was performed using PLAXIS 2D software. Several factors were studied, which included: embedment depth of the top reinforcement layer (U), width of horizontal planar form of the reinforcement (W), and spacing between geotextile reinforcement layers (H). Number of reinforcement layers (N) was varied to determine the optimum parameters of U/B, W/B, H/B, and N, where B is the footing width. The most effective improvement technique was found for the full wraparound ends of geotextile with filled-in sand and sand backfill. The outcome of this research will provide a preliminary guideline in a design of RSF structure with different ground soils and other RSF structures with different geosynthetic types.


2012 ◽  
Vol 203 ◽  
pp. 325-328
Author(s):  
Xin Jie Chu

This paper analyzes the stability and structural optimization of self-elevating platform pile foundation, preliminarily discusses the method of analyzing the bearing capacity of the layer soil foundation, and establishes the numerical computation models for the whole platform, pile, pile shoe, etc. Besides, through these analyses, the pile structure is optimized, and the stress concentration in the joint between pile and pile shoe is reduced. Also, this study is of reference value for the analysis on the self-elevating platform pile foundation design and the platform operation stability.


Sign in / Sign up

Export Citation Format

Share Document