scholarly journals Intercomparison of improved satellite rainfall estimation with CHIRPS gridded product and rain gauge data over Venezuela

Atmósfera ◽  
2016 ◽  
Vol 29 (4) ◽  
pp. 323-342 ◽  
Author(s):  
Franklin Javier Paredes Trejo ◽  
◽  
Humberto Álvarez Barbosa ◽  
Marcos A. Peñaloza-Murillo ◽  
Maria Alejandra Moreno ◽  
...  
2013 ◽  
Vol 17 (7) ◽  
pp. 2905-2915 ◽  
Author(s):  
M. Arias-Hidalgo ◽  
B. Bhattacharya ◽  
A. E. Mynett ◽  
A. van Griensven

Abstract. At present, new technologies are becoming available to extend the coverage of conventional meteorological datasets. An example is the TMPA-3B42R dataset (research – v6). The usefulness of this satellite rainfall product has been investigated in the hydrological modeling of the Vinces River catchment (Ecuadorian lowlands). The initial TMPA-3B42R information exhibited some features of the precipitation spatial pattern (e.g., decreasing southwards and westwards). It showed a remarkable bias compared to the ground-based rainfall values. Several time scales (annual, seasonal, monthly, etc.) were considered for bias correction. High correlations between the TMPA-3B42R and the rain gauge data were still found for the monthly resolution, and accordingly a bias correction at that level was performed. Bias correction factors were calculated, and, adopting a simple procedure, they were spatially distributed to enhance the satellite data. By means of rain gauge hyetographs, the bias-corrected monthly TMPA-3B42R data were disaggregated to daily resolution. These synthetic time series were inserted in a hydrological model to complement the available rain gauge data to assess the model performance. The results were quite comparable with those using only the rain gauge data. Although the model outcomes did not improve remarkably, the contribution of this experimental methodology was that, despite a high bias, the satellite rainfall data could still be corrected for use in rainfall-runoff modeling at catchment and daily level. In absence of rain gauge data, the approach may have the potential to provide useful data at scales larger than the present modeling resolution (e.g., monthly/basin).


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 859 ◽  
Author(s):  
Winifred Ayinpogbilla Atiah ◽  
Leonard Kofitse Amekudzi ◽  
Jeffrey Nii Armah Aryee ◽  
Kwasi Preko ◽  
Sylvester Kojo Danuor

In regions of sparse gauge networks, satellite rainfall products are mostly used as surrogate measurements for various rainfall impact studies. Their potential to complement rain gauge measurements is influenced by the uncertainties associated with them. This study evaluates the performance of satellites and merged rainfall products over Ghana in order to provide information on the consistency and reliability of such products. Satellite products were validated with gridded rain gauge data from the Ghana Meteorological Agency (GMet) on various time scales. It was observed that the performance of the products in the country are mostly scale and location dependent. In addition, most of the products showed relatively good skills on the seasonal scale (r > 0.90) rather than the annual, and, after removal of seasonality from the datasets, except ARC2 that had larger biases in most cases. Again, all products captured the onsets, cessations, and spells countrywide and in the four agro-ecological zones. However, CHIRPS particularly revealed a better skill on both seasonal and annual scales countrywide. The products were not affected by the number of gauge stations within a grid cell in the Forest and Transition zones. This study, therefore, recommends all products except ARC2 for climate impact studies over the region.


Hydrology ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 95 ◽  
Author(s):  
Tam ◽  
Abd Rahman ◽  
Harun ◽  
Hanapi ◽  
Kaoje

The advent of satellite rainfall products can provide a solution to the scarcity of observed rainfall data. The present study aims to evaluate the performance of high spatial-temporal resolution satellite rainfall products (SRPs) and rain gauge data in hydrological modelling and flood inundation mapping. Four SRPs, Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) - Early, - Late (IMERG-E, IMERG-L), Global Satellite Mapping of Precipitation-Near Real Time (GSMaP-NRT), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks- Cloud Classification System (PERSIANN-CCS) and rain gauge data were used as the primary input to a hydrological model, Rainfall-Runoff-Inundation (RRI) and the simulated flood level and runoff were compared with the observed data using statistical metrics. GSMaP showed the best performance in simulating hourly runoff with the lowest relative bias (RB) and the highest Nash-Sutcliffe efficiency (NSE) of 4.9% and 0.79, respectively. Meanwhile, the rain gauge data was able to produce runoff with −12.2% and 0.71 for RB and NSE, respectively. The other three SRPs showed acceptable results in daily discharge simulation (NSE value between 0.42 and 0.49, and RB value between −23.3% and −31.2%). The generated flood map also agreed with the published information. In general, the SRPs, particularly the GSMaP, showed their ability to support rapid flood forecasting required for early warning of floods.


Atmósfera ◽  
2015 ◽  
Vol 28 (1) ◽  
pp. 51-61 ◽  
Author(s):  
R. M. Gairola ◽  
◽  
Satya Prakash ◽  
P. K. Pal ◽  
◽  
...  

Author(s):  
Bui Thi Hieu

Satellite based precipitation product (GSMaP-MVK) can be reliably used to estimate the Areal Mean Precipitation error based on “Sample Design method” (Esdd) with the effort to mitigate the problem of sparse data, especially severe in poorly gauged river basins. In addition, the satellite-gauge merging precipitation would reduce significantly the magnitude gaps between the satellite rainfall estimations and the rain gauge data. In this study, the capability of satellite-gauge merging precipitation using GSMaP-MVK and local dense rain gauge data with bias reduction approach to evaluate the AMP is investigated. The main finding is that satellite-gauge blending data which incorporates a dense rain gauge measurements shows the better capability to evaluate AMP using Esdd index than the original satellite only precipitation estimations. However, Esdd quantification performances of satellite-gauge blending precipitation are inferior to the original satellite only precipitation product GSMaP-MVK when the number of blended rain gauges is not large enough. Keywords: areal mean precipitation; remote sensed precipitation product; satellite-gauge merging; rainfall runoff simulations.


2014 ◽  
Vol 119 (1-2) ◽  
pp. 203-219 ◽  
Author(s):  
Meixian Liu ◽  
Xianli Xu ◽  
Alexander Y. Sun ◽  
Kelin Wang ◽  
Yuemin Yue ◽  
...  

1999 ◽  
Vol 35 (8) ◽  
pp. 2487-2503 ◽  
Author(s):  
Matthias Steiner ◽  
James A. Smith ◽  
Stephen J. Burges ◽  
Carlos V. Alonso ◽  
Robert W. Darden

Author(s):  
Margaret Wambui Kimani ◽  
Joost C.B. Hoedjes ◽  
Zhongbo Su

Advances in remote sensing have led to use of satellite-derived rainfall products to complement the sparse rain gauge data. Although globally derived and some regional bias corrected, these products often show large discrepancies with ground measurements attributed to local and external factors that require systematic consideration. Decreasing rain gauge network however inhibits continuous validation of these products. We propose to deal with this problem by the use of Bayesian approach to merge the existing historical rain gauge information to create a consistent satellite rainfall data that can be used for climate studies. Monthly Bayesian bias correction is applied to the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS v2) data to reduce systematic errors using a corresponding gridded (0.05°) rain gauge data over East Africa for a period of 33 (1981–2013) years of which 22 years are utilized to derive error fields which are then applied to an independent CHIRPS data for 11 years for validation. The bias correction is spatially and temporally assessed during the rainfall wet months of March-May (MAM), June-August (JJA) and October–December (OND) in East Africa. Results show significant reduction of systematic errors at both monthly and yearly scales and harmonization of their cumulative distributions. Monthly statistics showed a reduction of RMSD (29–56)% and MAE (28–60)% and an increase of correlations (2–32) %, while yearly ones showed reductions of RMSD (9-23)%, and MAE (7–27)% and increase of correlations (4–77)% for MAM months, reduction of RMSD (15–35)% and MAE (16–41)% and increase in correlations (5–16)% for JJA months, and reduction of RMSD (3–35)% and MAE (9–32)% and increase of correlations (3–65)% for OND months. Systematic errors of corrected data were influenced by local processes especially over Lake Victoria and high elevated areas. Large-scale circulations induced errors were mainly during JJA and OND rainfall seasons and were reduced by the separation of anomalous years during training. The proposed approach is recommended for generating long-term data for climate studies where consistencies of errors can be assumed.


Sign in / Sign up

Export Citation Format

Share Document