scholarly journals Experiences in using the TMPA-3B42R satellite data to complement rain gauge measurements in the Ecuadorian coastal foothills

2013 ◽  
Vol 17 (7) ◽  
pp. 2905-2915 ◽  
Author(s):  
M. Arias-Hidalgo ◽  
B. Bhattacharya ◽  
A. E. Mynett ◽  
A. van Griensven

Abstract. At present, new technologies are becoming available to extend the coverage of conventional meteorological datasets. An example is the TMPA-3B42R dataset (research – v6). The usefulness of this satellite rainfall product has been investigated in the hydrological modeling of the Vinces River catchment (Ecuadorian lowlands). The initial TMPA-3B42R information exhibited some features of the precipitation spatial pattern (e.g., decreasing southwards and westwards). It showed a remarkable bias compared to the ground-based rainfall values. Several time scales (annual, seasonal, monthly, etc.) were considered for bias correction. High correlations between the TMPA-3B42R and the rain gauge data were still found for the monthly resolution, and accordingly a bias correction at that level was performed. Bias correction factors were calculated, and, adopting a simple procedure, they were spatially distributed to enhance the satellite data. By means of rain gauge hyetographs, the bias-corrected monthly TMPA-3B42R data were disaggregated to daily resolution. These synthetic time series were inserted in a hydrological model to complement the available rain gauge data to assess the model performance. The results were quite comparable with those using only the rain gauge data. Although the model outcomes did not improve remarkably, the contribution of this experimental methodology was that, despite a high bias, the satellite rainfall data could still be corrected for use in rainfall-runoff modeling at catchment and daily level. In absence of rain gauge data, the approach may have the potential to provide useful data at scales larger than the present modeling resolution (e.g., monthly/basin).

Author(s):  
Margaret Wambui Kimani ◽  
Joost C.B. Hoedjes ◽  
Zhongbo Su

Advances in remote sensing have led to use of satellite-derived rainfall products to complement the sparse rain gauge data. Although globally derived and some regional bias corrected, these products often show large discrepancies with ground measurements attributed to local and external factors that require systematic consideration. Decreasing rain gauge network however inhibits continuous validation of these products. We propose to deal with this problem by the use of Bayesian approach to merge the existing historical rain gauge information to create a consistent satellite rainfall data that can be used for climate studies. Monthly Bayesian bias correction is applied to the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS v2) data to reduce systematic errors using a corresponding gridded (0.05°) rain gauge data over East Africa for a period of 33 (1981–2013) years of which 22 years are utilized to derive error fields which are then applied to an independent CHIRPS data for 11 years for validation. The bias correction is spatially and temporally assessed during the rainfall wet months of March-May (MAM), June-August (JJA) and October–December (OND) in East Africa. Results show significant reduction of systematic errors at both monthly and yearly scales and harmonization of their cumulative distributions. Monthly statistics showed a reduction of RMSD (29–56)% and MAE (28–60)% and an increase of correlations (2–32) %, while yearly ones showed reductions of RMSD (9-23)%, and MAE (7–27)% and increase of correlations (4–77)% for MAM months, reduction of RMSD (15–35)% and MAE (16–41)% and increase in correlations (5–16)% for JJA months, and reduction of RMSD (3–35)% and MAE (9–32)% and increase of correlations (3–65)% for OND months. Systematic errors of corrected data were influenced by local processes especially over Lake Victoria and high elevated areas. Large-scale circulations induced errors were mainly during JJA and OND rainfall seasons and were reduced by the separation of anomalous years during training. The proposed approach is recommended for generating long-term data for climate studies where consistencies of errors can be assumed.


2007 ◽  
Vol 8 (6) ◽  
pp. 1204-1224 ◽  
Author(s):  
J. M. Schuurmans ◽  
M. F. P. Bierkens ◽  
E. J. Pebesma ◽  
R. Uijlenhoet

Abstract This study investigates the added value of operational radar with respect to rain gauges in obtaining high-resolution daily rainfall fields as required in distributed hydrological modeling. To this end data from the Netherlands operational national rain gauge network (330 gauges nationwide) is combined with an experimental network (30 gauges within 225 km2). Based on 74 selected rainfall events (March–October 2004) the spatial variability of daily rainfall is investigated at three spatial extents: small (225 km2), medium (10 000 km2), and large (82 875 km2). From this analysis it is shown that semivariograms show no clear dependence on season. Predictions of point rainfall are performed for all three extents using three different geostatistical methods: (i) ordinary kriging (OK; rain gauge data only), (ii) kriging with external drift (KED), and (iii) ordinary collocated cokriging (OCCK), with the latter two using both rain gauge data and range-corrected daily radar composites—a standard operational radar product from the Royal Netherlands Meteorological Institute (KNMI). The focus here is on automatic prediction. For the small extent, rain gauge data alone perform better than radar, while for larger extents with lower gauge densities, radar performs overall better than rain gauge data alone (OK). Methods using both radar and rain gauge data (KED and OCCK) prove to be more accurate than using either rain gauge data alone (OK) or radar, in particular, for larger extents. The added value of radar is positively related to the correlation between radar and rain gauge data. Using a pooled semivariogram is almost as good as using event-based semivariograms, which is convenient if the prediction is to be automated. An interesting result is that the pooled semivariograms perform better in terms of estimating the prediction error (kriging variance) especially for the small and medium extent, where the number of data points to estimate semivariograms is small and event-based semivariograms are rather unstable.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 859 ◽  
Author(s):  
Winifred Ayinpogbilla Atiah ◽  
Leonard Kofitse Amekudzi ◽  
Jeffrey Nii Armah Aryee ◽  
Kwasi Preko ◽  
Sylvester Kojo Danuor

In regions of sparse gauge networks, satellite rainfall products are mostly used as surrogate measurements for various rainfall impact studies. Their potential to complement rain gauge measurements is influenced by the uncertainties associated with them. This study evaluates the performance of satellites and merged rainfall products over Ghana in order to provide information on the consistency and reliability of such products. Satellite products were validated with gridded rain gauge data from the Ghana Meteorological Agency (GMet) on various time scales. It was observed that the performance of the products in the country are mostly scale and location dependent. In addition, most of the products showed relatively good skills on the seasonal scale (r > 0.90) rather than the annual, and, after removal of seasonality from the datasets, except ARC2 that had larger biases in most cases. Again, all products captured the onsets, cessations, and spells countrywide and in the four agro-ecological zones. However, CHIRPS particularly revealed a better skill on both seasonal and annual scales countrywide. The products were not affected by the number of gauge stations within a grid cell in the Forest and Transition zones. This study, therefore, recommends all products except ARC2 for climate impact studies over the region.


2012 ◽  
Vol 13 (1) ◽  
pp. 338-350 ◽  
Author(s):  
Menberu M. Bitew ◽  
Mekonnen Gebremichael ◽  
Lula T. Ghebremichael ◽  
Yared A. Bayissa

Abstract This study focuses on evaluating four widely used global high-resolution satellite rainfall products [the Climate Prediction Center’s morphing technique (CMORPH) product, the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) near-real-time product (3B42RT), the TMPA method post-real-time research version product (3B42), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) product] with a spatial resolution of 0.25° and temporal resolution of 3 h through their streamflow simulations in the Soil and Water Assessment Tool (SWAT) hydrologic model of a 299-km2 mountainous watershed in Ethiopia. Results show significant biases in the satellite rainfall estimates. The 3B42RT and CMORPH products perform better than the 3B42 and PERSIANN. The predictive ability of each of the satellite rainfall was examined using a SWAT model calibrated in two different approaches: with rain gauge rainfall as input, and with each of the satellite rainfall products as input. Significant improvements in model streamflow simulations are obtained when the model is calibrated with input-specific rainfall data than with rain gauge data. Calibrating SWAT with satellite rainfall estimates results in curve number values that are by far higher than the standard tabulated values, and therefore caution must be exercised when using standard tabulated parameter values with satellite rainfall inputs. The study also reveals that bias correction of satellite rainfall estimates significantly improves the model simulations. The best-performing model simulations based on satellite rainfall inputs are obtained after bias correction and model recalibration.


2015 ◽  
Vol 16 (5) ◽  
pp. 2153-2168 ◽  
Author(s):  
Daniele Nerini ◽  
Zed Zulkafli ◽  
Li-Pen Wang ◽  
Christian Onof ◽  
Wouter Buytaert ◽  
...  

Abstract This study compares two nonparametric rainfall data merging methods—the mean bias correction and double-kernel smoothing—with two geostatistical methods—kriging with external drift and Bayesian combination—for optimizing the hydrometeorological performance of a satellite-based precipitation product over a mesoscale tropical Andean watershed in Peru. The analysis is conducted using 11 years of daily time series from the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product (also TRMM 3B42) and 173 rain gauges from the national weather station network. The results are assessed using 1) a cross-validation procedure and 2) a catchment water balance analysis and hydrological modeling. It is found that the double-kernel smoothing method delivered the most consistent improvement over the original satellite product in both the cross-validation and hydrological evaluation. The mean bias correction also improved hydrological performance scores, particularly at the subbasin scale where the rain gauge density is higher. Given the spatial heterogeneity of the climate, the size of the modeled catchment, and the sparsity of data, it is concluded that nonparametric merging methods can perform as well as or better than more complex geostatistical methods, whose assumptions may not hold under the studied conditions. Based on these results, a systematic approach to the selection of a satellite–rain gauge data merging technique is proposed that is based on data characteristics. Finally, the underperformance of an ordinary kriging interpolation of the rain gauge data, compared to TMPA and other merged products, supports the use of satellite-based products over gridded rain gauge products that utilize sparse data for hydrological modeling at large scales.


Hydrology ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 95 ◽  
Author(s):  
Tam ◽  
Abd Rahman ◽  
Harun ◽  
Hanapi ◽  
Kaoje

The advent of satellite rainfall products can provide a solution to the scarcity of observed rainfall data. The present study aims to evaluate the performance of high spatial-temporal resolution satellite rainfall products (SRPs) and rain gauge data in hydrological modelling and flood inundation mapping. Four SRPs, Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) - Early, - Late (IMERG-E, IMERG-L), Global Satellite Mapping of Precipitation-Near Real Time (GSMaP-NRT), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks- Cloud Classification System (PERSIANN-CCS) and rain gauge data were used as the primary input to a hydrological model, Rainfall-Runoff-Inundation (RRI) and the simulated flood level and runoff were compared with the observed data using statistical metrics. GSMaP showed the best performance in simulating hourly runoff with the lowest relative bias (RB) and the highest Nash-Sutcliffe efficiency (NSE) of 4.9% and 0.79, respectively. Meanwhile, the rain gauge data was able to produce runoff with −12.2% and 0.71 for RB and NSE, respectively. The other three SRPs showed acceptable results in daily discharge simulation (NSE value between 0.42 and 0.49, and RB value between −23.3% and −31.2%). The generated flood map also agreed with the published information. In general, the SRPs, particularly the GSMaP, showed their ability to support rapid flood forecasting required for early warning of floods.


Atmósfera ◽  
2016 ◽  
Vol 29 (4) ◽  
pp. 323-342 ◽  
Author(s):  
Franklin Javier Paredes Trejo ◽  
◽  
Humberto Álvarez Barbosa ◽  
Marcos A. Peñaloza-Murillo ◽  
Maria Alejandra Moreno ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 533
Author(s):  
Alejandra De Vera ◽  
Pablo Alfaro ◽  
Rafael Terra

Systems exposed to hydroclimatic variability, such as the integrated electric system in Uruguay, increasingly require real-time multiscale information to optimize management. Monitoring of the precipitation field is key to inform the future hydroelectric energy availability. We present an operational implementation of an algorithm that merges satellite precipitation estimates with rain gauge data, based on a 3-step technique: (i) Regression of station data on the satellite estimate using a Generalized Linear Model; (ii) Interpolation of the regression residuals at station locations to the entire grid using Ordinary Kriging and (iii) Application of a rain/no rain mask. The operational implementation follows five steps: (i) Data download and daily accumulation; (ii) Data quality control; (iii) Merging technique; (iv) Hydrological modeling and (v) Electricity-system simulation. The hydrological modeling is carried with the GR4J rainfall-runoff model applied to 17 sub-catchments of the G. Terra basin with routing up to the reservoir. The implementation became operational at the Electricity Market Administration (ADME) on June 2020. The performance of the merged precipitation estimate was evaluated through comparison with an independent, dense and uniformly distributed rain gauge network using several relevant statistics. Further validation is presented comparing the simulated inflow to the estimate derived from a reservoir mass budget. Results confirm that the estimation that incorporates the satellite information in addition to the surface observations has a higher performance than the one that only uses rain gauge data, both in the rainfall statistical evaluation and hydrological simulation.


2019 ◽  
Vol 14 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Santosa Sandy Putra ◽  
Banata Wachid Ridwan ◽  
Kazuki Yamanoi ◽  
Makoto Shimomura ◽  
Sulistiyani ◽  
...  

An X-band radar was installed in 2014 at Merapi Museum, Yogyakarta, Indonesia, to monitor pyroclastic and rainfall events around Mt. Merapi. This research aims to perform a reliability analysis of the point extracted rainfall data from the aforementioned newly installed radar to improve the performance of the warning system in the future. The radar data was compared with the monitored rain gauge data from Balai Sabo and the IMERG satellite data from NASA and JAXA (The Integrated Multi-satellitE Retrievals for GPM), which had not been done before. All of the rainfall data was compared on an hourly interval. The comparisons were conducted based on 11 locations that correspond to the ground rainfall measurement stations. The locations of the rain gauges are spread around Mt. Merapi area. The point rainfall information was extracted from the radar data grid and the satellite data grid, which were compared with the rain gauge data. The data were then calibrated and adjusted up to the optimum state. Based on January 2017–March 2018 data, it was obtained that the optimum state has a NSF value of 0.41 and R2value of 0.56. As a result, it was determined that the radar can capture around 79% of the hourly rainfall occurrence around Mt. Merapi area during the chosen calibration period, in comparison with the rain gauge data. The radar was also able to capture nearby 40–50% of the heavy rainfall events that pose risks of lahar. In contrast, the radar data performance in detecting drizzling and light rain types were quite precise (55% of cases), although the satellite data could detect slightly better (60% of cases). These results indicate that the radar sensitivity in detecting the extreme rainfall events must receive higher priority in future developments, especially for applications to the existing Mt. Merapi lahar early warning systems.


Sign in / Sign up

Export Citation Format

Share Document