UAV Low Altitude Photogrammetry for Power Line Inspection

Author(s):  
Yong Zhang ◽  
Xiuxiao Yuan ◽  
Yi Fang ◽  
Shiyu Chen

When the distance between an obstacle and a power line is less than the discharge distance, a discharge arc can be generated, resulting in interruption of power supplies. Therefore, regular safety inspections are necessary to ensure safe operations of power grids. Tall vegetation and buildings are the key factors threatening the safe operation of extra high voltage transmission lines within a power line corridor. Manual or LiDAR based-inspections are time consuming and expensive. To make safety inspections more efficient and flexible, a low-altitude unmanned aerial vehicle remote-sensing platform equipped with optical digital camera was used to inspect power line corridors. We propose a semi-patch matching algorithm based on epipolar constraints using both correlation coefficient and the shape of its curve to extract three dimensional (3D) point clouds for a power line corridor. Virtual photography was used to transform the power line direction from approximately parallel to the epipolar line to approximately perpendicular to epipolar line to improve power line measurement accuracy. The distance between the power lines and the 3D point cloud is taken as a criterion for locating obstacles within the power line corridor automatically. Experimental results show that our proposed method is a reliable, cost effective and applicable way for practical power line inspection, and can locate obstacles within the power line corridor with measurement accuracies better than ±0.5 m.

2021 ◽  
Vol 13 (8) ◽  
pp. 1571
Author(s):  
Yuchun Huang ◽  
Yingli Du ◽  
Wenxuan Shi

High-voltage and ultra-high-voltage overhead power lines are important to meet the electricity demand of our daily activities and productions. Due to the overgrowth of trees/vegetation within the corridor area, the distance between the power lines and its surroundings may break through the safety threshold, which could cause potential hazards such as discharge and fire. To ensure the safe and stable operation of the power lines, it is necessary to survey them regularly so that the potential hazards from the surroundings within the power line corridor could be investigated timely. This paper is motivated to quickly and accurately survey the power line corridor with the 3D point clouds. The main contributions of this paper include: (1) the spatial line clustering is proposed to accurately classify and complete the power line points, which can greatly overcome the sparsity and missing of LiDAR points within the complex power line corridor. (2) The contextual relationship between power lines and pylon is well investigated by the grid-based analysis, so that the suspension points of power lines on the pylon are well located. (3) The catenary plane-based simplification of 3D spatial distance calculation between power lines and ground objects facilitates the survey of the power line corridor. Experimental results show that the accuracy of safety distance surveying is 5 cm for power line corridors of all voltage levels. Compared to the ground-truth point-to-point calculation, the speed of surveying is enhanced thousands of times. It is promising to greatly improve both the accuracy and efficiency of surveying the potential hazards of power line corridor.


2019 ◽  
Vol 11 (21) ◽  
pp. 2567 ◽  
Author(s):  
Ana Sánchez-Rodríguez ◽  
Mario Soilán ◽  
Manuel Cabaleiro ◽  
Pedro Arias

Transport networks need periodic inspections to increase their safety and improve their management. In the last few years, LiDAR (light detection and ranging) technology has become a tool for helping to create a precise database of almost any type of infrastructure. Mobile laser scanning (MLS) systems use a laser beam to collect dense three dimensional (3D) point clouds, which include geometric and radiometric data of the environment in which they are placed. In the context of this paper, a methodology for automatically inspecting the clearance gauge and the deflection of the aerial contact line in railway tunnels is presented. The main objective is to compare results and verify their compliance with the Spanish norm. The 3D data are provided by a LYNX Mobile Mapper System (MMS). First, the area is surveyed and then the obtained (3D) point cloud is classified into contact wire, suspension wire, and remaining points. Finally, the inspection of the railway’s power line is performed. The validation of the proposed methodology has been carried out in three different tunnel point clouds, obtaining both qualitative and quantitative results for points’ classification, together with the results of the measures performed.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1228
Author(s):  
Ting On Chan ◽  
Linyuan Xia ◽  
Yimin Chen ◽  
Wei Lang ◽  
Tingting Chen ◽  
...  

Ancient pagodas are usually parts of hot tourist spots in many oriental countries due to their unique historical backgrounds. They are usually polygonal structures comprised by multiple floors, which are separated by eaves. In this paper, we propose a new method to investigate both the rotational and reflectional symmetry of such polygonal pagodas through developing novel geometric models to fit to the 3D point clouds obtained from photogrammetric reconstruction. The geometric model consists of multiple polygonal pyramid/prism models but has a common central axis. The method was verified by four datasets collected by an unmanned aerial vehicle (UAV) and a hand-held digital camera. The results indicate that the models fit accurately to the pagodas’ point clouds. The symmetry was realized by rotating and reflecting the pagodas’ point clouds after a complete leveling of the point cloud was achieved using the estimated central axes. The results show that there are RMSEs of 5.04 cm and 5.20 cm deviated from the perfect (theoretical) rotational and reflectional symmetries, respectively. This concludes that the examined pagodas are highly symmetric, both rotationally and reflectionally. The concept presented in the paper not only work for polygonal pagodas, but it can also be readily transformed and implemented for other applications for other pagoda-like objects such as transmission towers.


Author(s):  
P.M.B. Torres ◽  
P. J. S. Gonçalves ◽  
J.M.M. Martins

Purpose – The purpose of this paper is to present a robotic motion compensation system, using ultrasound images, to assist orthopedic surgery. The robotic system can compensate for femur movements during bone drilling procedures. Although it may have other applications, the system was thought to be used in hip resurfacing (HR) prosthesis surgery to implant the initial guide tool. The system requires no fiducial markers implanted in the patient, by using only non-invasive ultrasound images. Design/methodology/approach – The femur location in the operating room is obtained by processing ultrasound (USA) and computer tomography (CT) images, obtained, respectively, in the intra-operative and pre-operative scenarios. During surgery, the bone position and orientation is obtained by registration of USA and CT three-dimensional (3D) point clouds, using an optical measurement system and also passive markers attached to the USA probe and to the drill. The system description, image processing, calibration procedures and results with simulated and real experiments are presented and described to illustrate the system in operation. Findings – The robotic system can compensate for femur movements, during bone drilling procedures. In most experiments, the update was always validated, with errors of 2 mm/4°. Originality/value – The navigation system is based entirely on the information extracted from images obtained from CT pre-operatively and USA intra-operatively. Contrary to current surgical systems, it does not use any type of implant in the bone to track the femur movements.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


2019 ◽  
Vol 93 (3) ◽  
pp. 411-429 ◽  
Author(s):  
Maria Immacolata Marzulli ◽  
Pasi Raumonen ◽  
Roberto Greco ◽  
Manuela Persia ◽  
Patrizia Tartarino

Abstract Methods for the three-dimensional (3D) reconstruction of forest trees have been suggested for data from active and passive sensors. Laser scanner technologies have become popular in the last few years, despite their high costs. Since the improvements in photogrammetric algorithms (e.g. structure from motion—SfM), photographs have become a new low-cost source of 3D point clouds. In this study, we use images captured by a smartphone camera to calculate dense point clouds of a forest plot using SfM. Eighteen point clouds were produced by changing the densification parameters (Image scale, Point density, Minimum number of matches) in order to investigate their influence on the quality of the point clouds produced. In order to estimate diameter at breast height (d.b.h.) and stem volumes, we developed an automatic method that extracts the stems from the point cloud and then models them with cylinders. The results show that Image scale is the most influential parameter in terms of identifying and extracting trees from the point clouds. The best performance with cylinder modelling from point clouds compared to field data had an RMSE of 1.9 cm and 0.094 m3, for d.b.h. and volume, respectively. Thus, for forest management and planning purposes, it is possible to use our photogrammetric and modelling methods to measure d.b.h., stem volume and possibly other forest inventory metrics, rapidly and without felling trees. The proposed methodology significantly reduces working time in the field, using ‘non-professional’ instruments and automating estimates of dendrometric parameters.


Author(s):  
Bisheng Yang ◽  
Yuan Liu ◽  
Fuxun Liang ◽  
Zhen Dong

High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.


Author(s):  
T. Guo ◽  
A. Capra ◽  
M. Troyer ◽  
A. Gruen ◽  
A. J. Brooks ◽  
...  

Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.


2020 ◽  
Vol 10 (3) ◽  
pp. 1140 ◽  
Author(s):  
Jorge L. Martínez ◽  
Mariano Morán ◽  
Jesús Morales ◽  
Alfredo Robles ◽  
Manuel Sánchez

Autonomous navigation of ground vehicles on natural environments requires looking for traversable terrain continuously. This paper develops traversability classifiers for the three-dimensional (3D) point clouds acquired by the mobile robot Andabata on non-slippery solid ground. To this end, different supervised learning techniques from the Python library Scikit-learn are employed. Training and validation are performed with synthetic 3D laser scans that were labelled point by point automatically with the robotic simulator Gazebo. Good prediction results are obtained for most of the developed classifiers, which have also been tested successfully on real 3D laser scans acquired by Andabata in motion.


2019 ◽  
Vol 11 (10) ◽  
pp. 1204 ◽  
Author(s):  
Yue Pan ◽  
Yiqing Dong ◽  
Dalei Wang ◽  
Airong Chen ◽  
Zhen Ye

Three-dimensional (3D) digital technology is essential to the maintenance and monitoring of cultural heritage sites. In the field of bridge engineering, 3D models generated from point clouds of existing bridges is drawing increasing attention. Currently, the widespread use of the unmanned aerial vehicle (UAV) provides a practical solution for generating 3D point clouds as well as models, which can drastically reduce the manual effort and cost involved. In this study, we present a semi-automated framework for generating structural surface models of heritage bridges. To be specific, we propose to tackle this challenge via a novel top-down method for segmenting main bridge components, combined with rule-based classification, to produce labeled 3D models from UAV photogrammetric point clouds. The point clouds of the heritage bridge are generated from the captured UAV images through the structure-from-motion workflow. A segmentation method is developed based on the supervoxel structure and global graph optimization, which can effectively separate bridge components based on geometric features. Then, recognition by the use of a classification tree and bridge geometry is utilized to recognize different structural elements from the obtained segments. Finally, surface modeling is conducted to generate surface models of the recognized elements. Experiments using two bridges in China demonstrate the potential of the presented structural model reconstruction method using UAV photogrammetry and point cloud processing in 3D digital documentation of heritage bridges. By using given markers, the reconstruction error of point clouds can be as small as 0.4%. Moreover, the precision and recall of segmentation results using testing date are better than 0.8, and a recognition accuracy better than 0.8 is achieved.


Sign in / Sign up

Export Citation Format

Share Document