scholarly journals In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia

Author(s):  
Olivier Sandre ◽  
Coralie Genevois ◽  
Eneko Garaio ◽  
Laurent Adumeau ◽  
Stéphane Mornet ◽  
...  

The present work aims to demonstrate that colloidal dispersions of magnetic iron oxide nanoparticles stabilized with dextran macromolecules placed in an alternating magnetic field can not only produce heat, but also that these particles could be used in vivo for local and non-invasive deposition of a thermal dose sufficient to trigger thermo-induced gene expression. Iron oxide nanoparticles were first characterized in vitro on a bio-inspired setup, and then they were assayed in vivo using a transgenic mouse strain expressing the luciferase reporter gene under transcriptional control of a thermosensitive promoter. Iron oxide nanoparticles dispersions were applied topically on the mouse skin or injected sub-cutaneously with Matrigel™ to generate so called pseudo tumors. Temperature was monitored continuously with a feedback loop to control the power of the magnetic field generator and to avoid overheating. Thermo-induced luciferase expression was followed by bioluminescence imaging 6 hours after heating. We showed that dextran-coated magnetic iron oxide nanoparticles dispersions were able to induce in vivo mild hyperthermia compatible with thermo-induced gene expression in surrounding tissues and without impairing cell viability. These data open new therapeutic perspectives for using mild magnetic hyperthermia as non-invasive modulation of tumor microenvironment by local thermo-induced gene expression or drug release.

2017 ◽  
Vol 6 (5) ◽  
pp. 449-472 ◽  
Author(s):  
Marina Fontes de Paula Aguiar ◽  
Javier Bustamante Mamani ◽  
Taylla Klei Felix ◽  
Rafael Ferreira dos Reis ◽  
Helio Rodrigues da Silva ◽  
...  

AbstractThe purpose of this study was to review the use of the magnetic targeting technique, characterized by magnetic driving compounds based on superparamagnetic iron oxide nanoparticles (SPIONs), as drug delivery for a specific brain locus in gliomas. We reviewed a process mediated by the application of an external static magnetic field for targeting SPIONs in gliomas. A search of PubMed, Cochrane Library, Scopus, and Web of Science databases identified 228 studies, 23 of which were selected based on inclusion criteria and predetermined exclusion criteria. The articles were analyzed by physicochemical characteristics of SPIONs used, cell types used for tumor induction, characteristics of experimental glioma models, magnetic targeting technical parameters, and analysis method of process efficiency. The study shows the highlights and importance of magnetic targeting to optimize the magnetic targeting process as a therapeutic strategy for gliomas. Regardless of the intensity of the patterned magnetic field, the time of application of the field, and nanoparticle used (commercial or synthesized), all studies showed a vast advantage in the use of magnetic targeting, either alone or in combination with other techniques, for optimized glioma therapy. Therefore, this review elucidates the preclinical and therapeutic applications of magnetic targeting in glioma, an innovative nanobiotechnological method.


2017 ◽  
Vol 2 (5) ◽  
pp. 629-639 ◽  
Author(s):  
Gauvin Hemery ◽  
Coralie Genevois ◽  
Franck Couillaud ◽  
Sabrina Lacomme ◽  
Etienne Gontier ◽  
...  

PEGylated magnetic iron oxide nanoparticles (IONPs) were synthesised with the aim to provide proof of concept results of remote cancer cell killing by magnetic fluid hyperthermia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joong H. Kim ◽  
Stephen Dodd ◽  
Frank Q. Ye ◽  
Andrew K. Knutsen ◽  
Duong Nguyen ◽  
...  

AbstractMagnetic resonance imaging (MRI) is a widely used non-invasive methodology for both preclinical and clinical studies. However, MRI lacks molecular specificity. Molecular contrast agents for MRI would be highly beneficial for detecting specific pathological lesions and quantitatively evaluating therapeutic efficacy in vivo. In this study, an optimized Magnetization Prepared—RApid Gradient Echo (MP-RAGE) with 2 inversion times called MP2RAGE combined with advanced image co-registration is presented as an effective non-invasive methodology to quantitatively detect T1 MR contrast agents. The optimized MP2RAGE produced high quality in vivo mouse brain T1 (or R1 = 1/T1) map with high spatial resolution, 160 × 160 × 160 µm3 voxel at 9.4 T. Test–retest signal to noise was > 20 for most voxels. Extremely small iron oxide nanoparticles (ESIONPs) having 3 nm core size and 11 nm hydrodynamic radius after polyethylene glycol (PEG) coating were intracranially injected into mouse brain and detected as a proof-of-concept. Two independent MP2RAGE MR scans were performed pre- and post-injection of ESIONPs followed by advanced image co-registration. The comparison of two T1 (or R1) maps after image co-registration provided precise and quantitative assessment of the effects of the injected ESIONPs at each voxel. The proposed MR protocol has potential for future use in the detection of T1 molecular contrast agents.


SPIN ◽  
2019 ◽  
Vol 09 (02) ◽  
pp. 1940001 ◽  
Author(s):  
N. A. Usov

Assemblies of magnetic nanoparticles show a great potential for application in biomedicine, particularly, magnetic hyperthermia. However, to achieve desired therapeutic effect in magnetic hyperthermia, the assembly of nanoparticles should have a sufficiently high specific absorption rate (SAR) in alternating magnetic field of moderate amplitude and frequency. Using the Landau–Lifshitz stochastic equation, it is shown that dilute assemblies of iron oxide nanoparticles of optimal diameters are capable of providing SAR of the order of 400–600[Formula: see text]W/g in alternating magnetic field with the amplitude [Formula: see text][Formula: see text]Oe in the frequency range f = 300–500[Formula: see text]kHz. Unfortunately, in dense clusters of magnetic nanoparticles, which are often formed in a biological medium, there is a sharp decrease in SAR due to the influence of strong magneto-dipole interaction of closest nanoparticles. To overcome this difficulty, it is suggested covering the nanoparticles with nonmagnetic shells of sufficient thickness or using non-single-domain nanoparticles being in magnetization curling states.


2014 ◽  
Vol 802 ◽  
pp. 535-539 ◽  
Author(s):  
Fernanda A. Sampaio da Silva ◽  
Edwin E.G. Rojas ◽  
Sérgio Romero ◽  
Marcos Flávio de Campos

Nowadays, superparamagnetic iron oxide nanoparticles are an important tool for cancer treatment, such as magnetic hyperthermia. The goal is heating diseased tissue and then tumor cells are destroyed. Magnetic nanoparticles are promising mainly because they have specific ability to reduce side effects. However, forin vivoapplications, nanoparticles need to be coated by a biocompatible material. In this work, nanoparticles are coated by PEG (biocompatible polymer). Samples were produced by coprecipitation process. Information about particle size, magnetic properties and crystallinity were obtained.


Nanoscale ◽  
2017 ◽  
Vol 9 (38) ◽  
pp. 14405-14413 ◽  
Author(s):  
Vikash Malik ◽  
Antara Pal ◽  
Olivier Pravaz ◽  
Jérôme J. Crassous ◽  
Simon Granville ◽  
...  

We describe the synthesis of hybrid magnetic ellipsoidal nanoparticles that consist of a mixture of two different iron oxide phases, hematite (α-Fe2O3) and maghemite (γ-Fe2O3), and characterize their magnetic field-driven self-assembly.


Sign in / Sign up

Export Citation Format

Share Document