molecular contrast
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 21)

H-INDEX

17
(FIVE YEARS 3)

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3414
Author(s):  
Sarah Nasreen Schmidt ◽  
Wilfried Reichardt ◽  
Beat A. Kaufmann ◽  
Carolin Wadle ◽  
Dominik von Elverfeldt ◽  
...  

Previous mouse studies have shown the increased presence of platelets in the myocardium during early stages of myocarditis and their selective detection by MRI. Here, we aimed to depict early myocarditis using molecular contrast-enhanced ultrasound of activated platelets, and to evaluate the impact of a P2Y12 receptor platelet inhibition. Experimental autoimmune myocarditis was induced in BALB/c mice by subcutaneous injection of porcine cardiac myosin and complete Freund adjuvant (CFA). Activated platelets were targeted with microbubbles (MB) coupled to a single-chain antibody that binds to the “ligand-induced binding sites” of the GPIIb/IIIa-receptor (=LIBS-MB). Alongside myocarditis induction, a group of mice received a daily dose of 100 g prasugrel for 1 month. Mice injected with myosin and CFA had a significantly deteriorated ejection fraction and histological inflammation on day 28 compared to mice only injected with myosin. Platelets infiltrated the myocardium before reduction in ejection fraction could be detected by echocardiography. No selective binding of the LIBS-MB contrast agent could be detected by either ultrasound or histology. Prasugrel therapy preserved ejection fraction and significantly reduced platelet aggregates in the myocardium compared to mice without prasugrel therapy. Therefore, P2Y12 inhibition could be a promising early therapeutic target in myocarditis, requiring further investigation.


2021 ◽  
Author(s):  
Joshua L Lillvis ◽  
Hideo Otsuna ◽  
Xiaoyu Ding ◽  
Igor Pisarev ◽  
Takashi Kawase ◽  
...  

Electron microscopy (EM) allows for the reconstruction of dense neuronal connectomes but suffers from low throughput, limiting its application to small numbers of reference specimens. We developed a protocol and analysis pipeline using tissue expansion and lattice light-sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many samples with single synapse resolution and molecular contrast. We validate this approach in Drosophila, demonstrating that it yields synaptic counts similar to those obtained by EM, can be used to compare counts across sex and experience, and to correlate structural connectivity with functional connectivity. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.


2021 ◽  
Vol 22 (16) ◽  
pp. 8695
Author(s):  
Shiran Su ◽  
Thomas J. Esparza ◽  
Duong Nguyen ◽  
Simone Mastrogiacomo ◽  
Joong H. Kim ◽  
...  

Iron oxide nanoparticles and single domain antibodies from camelids (VHHs) have been increasingly recognized for their potential uses for medical diagnosis and treatment. However, there have been relatively few detailed characterizations of their pharmacokinetics (PK). The aim of this study was to develop imaging methods and pharmacokinetic models to aid the future development of a novel family of brain MRI molecular contrast agents. An efficient near-infrared (NIR) imaging method was established to monitor VHH and VHH conjugated nanoparticle kinetics in mice using a hybrid approach: kinetics in blood were assessed by direct sampling, and kinetics in kidney, liver, and brain were assessed by serial in vivo NIR imaging. These studies were performed under “basal” circumstances in which the VHH constructs and VHH-conjugated nanoparticles do not substantially interact with targets nor cross the blood brain barrier. Using this approach, we constructed a five-compartment PK model that fits the data well for single VHHs, engineered VHH trimers, and iron oxide nanoparticles conjugated to VHH trimers. The establishment of the feasibility of these methods lays a foundation for future PK studies of candidate brain MRI molecular contrast agents.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 281
Author(s):  
Yan Li ◽  
Gengxi Lu ◽  
Qifa Zhou ◽  
Zhongping Chen

Photoacoustic (PA) imaging is able to provide extremely high molecular contrast while maintaining the superior imaging depth of ultrasound (US) imaging. Conventional microscopic PA imaging has limited access to deeper tissue due to strong light scattering and attenuation. Endoscopic PA technology enables direct delivery of excitation light into the interior of a hollow organ or cavity of the body for functional and molecular PA imaging of target tissue. Various endoscopic PA probes have been developed for different applications, including the intravascular imaging of lipids in atherosclerotic plaque and endoscopic imaging of colon cancer. In this paper, the authors review representative probe configurations and corresponding preclinical applications. In addition, the potential challenges and future directions of endoscopic PA imaging are discussed.


BME Frontiers ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Lei Li ◽  
Lihong V. Wang

Photoacoustic tomography (PAT) that integrates the molecular contrast of optical imaging with the high spatial resolution of ultrasound imaging in deep tissue has widespread applications in basic biological science, preclinical research, and clinical trials. Recently, tremendous progress has been made in PAT regarding technical innovations, preclinical applications, and clinical translations. Here, we selectively review the recent progresses and advances in PAT, including the development of advanced PAT systems for small-animal and human imaging, newly engineered optical probes for molecular imaging, broad-spectrum PAT for label-free imaging of biological tissues, high-throughput snapshot photoacoustic topography, and integration of machine learning for image reconstruction and processing. We envision that PAT will have further technical developments and more impactful applications in biomedicine.


Author(s):  
Adilla Luthfia ◽  
Iis Nurhasah ◽  
Ali Khumaeni

The use of iodine contrast agents on CT Scan clinically shows a short-term blood circulation, non-specific biodistribution and causes side effects on kidneys. Nanoparticles have a longer half-time vascular than molecular contrast agents so it can be observed for a longer time after injection. Gadolinium (Z = 64) has a higher atomic number and X-ray absorbance coefficient than iodine (Z = 53) and does not have the negative effect on kidneys. The Gd nanoparticles development as a CT Scan contrast agent has potential to give more effectiveness than iodine contrast agents. In this study, Gd nanoparticles were synthesized using pulsed laser ablation method with wavelength 1064 nm, energy 45 mJ, and pulse width 7 ns. The ablation process was carried out for 180 minutes with repetition rate of 10 Hz and 15 Hz. The formation of Gd Nanoparticles was analyzed using UV-Vis spectrophotometer and FTIR (Fourier-Transform Infrared Spectroscopy). Testing the ability of Gd nanoparticles as a contrast agent was done in the diagnosis of head and abdomen using a CT Scan GE CT Optima 580 RT type 229156-3. UV-Vis spectrophotometer analysis showed that Gd nanoparticles had high absorbance at the wavelength less than 250 nm which indicated the formation of Gd2(OH)3 compounds. The repetition rate difference in ablation process resulted in the same concentration of Gd nanoparticles with different contrasts. Repetition rate of 10 Hz produced Gd nanoparticles with HU greater than repetition rate of 15 Hz and closer to HU of iodine. The results indicate that Gd nanoparticles can be used as a CT Scan contrast agent.


2021 ◽  
Vol 15 ◽  
Author(s):  
Silviu-Vasile Bodea ◽  
Gil Gregor Westmeyer

A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain’s network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joong H. Kim ◽  
Stephen Dodd ◽  
Frank Q. Ye ◽  
Andrew K. Knutsen ◽  
Duong Nguyen ◽  
...  

AbstractMagnetic resonance imaging (MRI) is a widely used non-invasive methodology for both preclinical and clinical studies. However, MRI lacks molecular specificity. Molecular contrast agents for MRI would be highly beneficial for detecting specific pathological lesions and quantitatively evaluating therapeutic efficacy in vivo. In this study, an optimized Magnetization Prepared—RApid Gradient Echo (MP-RAGE) with 2 inversion times called MP2RAGE combined with advanced image co-registration is presented as an effective non-invasive methodology to quantitatively detect T1 MR contrast agents. The optimized MP2RAGE produced high quality in vivo mouse brain T1 (or R1 = 1/T1) map with high spatial resolution, 160 × 160 × 160 µm3 voxel at 9.4 T. Test–retest signal to noise was > 20 for most voxels. Extremely small iron oxide nanoparticles (ESIONPs) having 3 nm core size and 11 nm hydrodynamic radius after polyethylene glycol (PEG) coating were intracranially injected into mouse brain and detected as a proof-of-concept. Two independent MP2RAGE MR scans were performed pre- and post-injection of ESIONPs followed by advanced image co-registration. The comparison of two T1 (or R1) maps after image co-registration provided precise and quantitative assessment of the effects of the injected ESIONPs at each voxel. The proposed MR protocol has potential for future use in the detection of T1 molecular contrast agents.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexander Fast ◽  
Akarsh Lal ◽  
Amanda F. Durkin ◽  
Griffin Lentsch ◽  
Ronald M. Harris ◽  
...  

Abstract We introduce a compact, fast large area multiphoton exoscope (FLAME) system with enhanced molecular contrast for macroscopic imaging of human skin with microscopic resolution. A versatile imaging platform, FLAME combines optical and mechanical scanning mechanisms with deep learning image restoration to produce depth-resolved images that encompass sub-mm2 to cm2 scale areas of tissue within minutes and provide means for a comprehensive analysis of live or resected thick human skin tissue. The FLAME imaging platform, which expands on a design recently introduced by our group, also features time-resolved single photon counting detection to uniquely allow fast discrimination and 3D virtual staining of melanin. We demonstrate its performance and utility by fast ex vivo and in vivo imaging of human skin. With the ability to provide rapid access to depth resolved images of skin over cm2 area and to generate 3D distribution maps of key sub-cellular skin components such as melanocytic dendrites and melanin, FLAME is ready to be translated into a clinical imaging tool for enhancing diagnosis accuracy, guiding therapy and understanding skin biology.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yifan Luo ◽  
Chen Gao ◽  
Wujie Chen ◽  
Kefeng Zhou ◽  
Maosheng Xu

Background and Aims. Magnetic resonance imaging (MRI) has taken an important role in the diagnosis of inflammatory bowel diseases (IBD). In the wake of current advances in nanotechnology, the drug delivery industry has seen a surge of nanoparticles advertising high specificity in target imaging. Given the rapid development of the field, this review has assembled related articles to explore whether molecular contrast agents can improve the diagnostic capability on gastrointestinal imaging, especially for IBD. Methods. Relevant articles published between 1998 and 2018 from a literature search of PubMed and EMBASE were reviewed. Data extraction was performed on the studies’ characteristics, experimental animals, modelling methods, nanoparticles type, magnetic resonance methods, and means of quantitative analysis. Results. A total of 8 studies were identified wherein the subjects were animals, and all studies employed MR equipment. One group utilized a perfluorocarbon solution and the other 7 groups used either magnetic nanoparticles or gadolinium- (Gd-) related nanoparticles for molecular contrast. With ultrasmall superparamagnetic iron oxide (USPIO) particles and Gd-related nanoparticles, signal enhancements were found in the mucosa or with focal lesion of IBD-related model in T1-weighted images (T1WI), whereas superparamagnetic iron oxide (SPIO) particles showed a signal decrease in the intestinal wall of the model in T1WI or T2-weighted images. The signal-to-noise ratio (SNR) was employed to analyze bowel intensity in 3 studies. And the percentage of normalized enhancement was used in 1 study for assessing the severity of inflammation. Conclusion. Molecular MRI with contrast agents can improve the early diagnosis of IBD and quantitate the severity of inflammation in experimental studies.


Sign in / Sign up

Export Citation Format

Share Document