scholarly journals Optical Conductivity on Charge Order Transition in Organic Dirac Electron System α-(BEDT-TTF)2I3

Author(s):  
Daigo Ohki ◽  
Genki Matsuno ◽  
Yukiko Omori ◽  
Akito Kobayashi

The optical conductivity in the charge order phase is calculated in the extended Hubbard model describing an organic Dirac electron system α-(BEDT-TTF)2I3 using the mean field theory and the Nakano-Kubo formula. A peak structure due to interband excitation being characteristic in two-dimensional Dirac electron system is found above the charge order gap. It is shown that the peak structure originates from the Van Hove singularities of the conduction and valence bands, where those singularities are located at a saddle point between two Dirac cones in momentum space. The frequency of the peak structure exhibits drastic change in the vicinity of the charge order transition.

2000 ◽  
Vol 61 (17) ◽  
pp. 11521-11528 ◽  
Author(s):  
Sergio A. Cannas ◽  
A. C. N. de Magalhães ◽  
Francisco A. Tamarit

2008 ◽  
Vol 17 (01) ◽  
pp. 151-159 ◽  
Author(s):  
J. SKALSKI

We discuss the effect of kinetic energy of the relative motion becoming spurious for separate fragments on the selfconsistent mean-field fission barriers. The treatment of the relative motion in the cluster model is contrasted with the necessity of a simpler and approximate approach in the mean-field theory. A scheme of the energy correction to the Hartree-Fock is proposed. The results obtained with the effective Skyrme interaction SLy 6 show that the correction, previously estimated as ~ 8 MeV in A = 70 - 100 nuclei, amounts to 4 MeV in the medium heavy nucleus 198 Hg and to null in 238 U . However, the corrected barrier implies a shorter fission half-life of the latter nucleus. The same effect is expected to lower barriers for multipartition (i.e. ternary fission, etc) and make hyperdeformed minima less stable.


1995 ◽  
Vol 02 (06) ◽  
pp. 773-785 ◽  
Author(s):  
L. WOJTCZAK ◽  
J.H. RUTKOWSKI

The thermodynamic potential governing the surface-melting, considered in terms of the crystallinity and its profile is related to the Gibbs free-energy functional, leads to van der Waals equation of state. The presented construction allows us to determine the mean-field coefficients by their reference to material constants. The model is applied to the surface-melting discussion within the Landau-type mean-field theory of phase-transitions. In particular, the surface-melting temperature is estimated and temperature dependence of the surface liquid-like layer thickness profile is obtained.


1980 ◽  
Vol 13 (3) ◽  
pp. 403-418 ◽  
Author(s):  
A Blandin ◽  
M Gabay ◽  
T Garel

Sign in / Sign up

Export Citation Format

Share Document