scholarly journals Comparing Methods of Rocky Desertification Monitoring at the Sub-pixel Scale in a Highly Heterogeneous Karst Region

Author(s):  
Xiangkun Qi ◽  
Chunhua Zhang ◽  
Kelin Wang

Karst rocky desertification (KRD) is a process where strong anthropogenic disturbances and exposure of carbonate bedrock occurs in fragile karst ecosystems. The fractional cover of rocky outcrops is a key indicator and mechanistic driver of KRD and can be accurately assessed using remote sensing technology. Nevertheless, rugged karst terrain relief can cause shadow effects on satellite imagery and combine with high heterogeneity of karst landscapes to prevent fractional cover retrievals. In this study, we explored the feasibility of applying multispectral high spatial resolution ALOS imagery for fractional cover extraction of rocky outcrops. We selected the dimidiate pixel model (DPM), which has been applied in previous studies, and spectral mixture analysis (SMA; including simple endmember spectral mixture analysis (SESMA) and multiple endmember spectral mixture analysis (MESMA)) to explore the feasibility of using remote images for KRD monitoring and improve accuracy for estimating fractions. Results from MESMA achieved high overall accuracy (76.4%) in monitoring percentage of rocky outcrop fraction in the study area. SESMA appears to underestimate percentage of rocky outcrop likely because the development of KRD was driven by complex factors (soil erosion, dissolution and anthropogenic disturbances). This results in spectral reflectance of rocky outcrop being variable in different settings. Predicted exposed bedrock coverage using SESMA and MESMA was similar in sun-lit and shaded areas although predictions from SESMA were smaller than reference data. DPM underestimated the fractional cover of rocky outcrops on south-facing slopes and overestimated it in shaded areas. Furthermore, SESMA and MESMA effectively reduced topographic effects. We conclude that it is better to extract percentage of rocky outcrop using MESMA in the karst region of southwestern China. Remote sensing is emerging as a feasible method to extract surface condition information in heterogeneous and rugged landscapes.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiangkun Qi ◽  
Chunhua Zhang ◽  
Kelin Wang

Abstract Rugged karst terrain relief that creates shadows in satellite imagery, combined with high karst landscape heterogeneity stand in the way of fractional cover retrieval on karst rocky desertification (KRD) monitoring. In this study, we explored the feasibility of applying multispectral high spatial resolution Advanced Land Observing Satellite (ALOS) imagery for the fractional cover extraction of rocky outcrops. Dimidiate pixel model (DPM) and spectral mixture analysis (SMA) approaches (including simple endmember spectral mixture analysis and multiple endmember spectral mixture analysis) were selected to explore their feasibility for KRD monitoring through accuracy improvement for fraction estimation. Results showed fractional cover retrievals at the sub-pixel scale is essential in highly heterogeneous karst landscapes. Indeed, mixed pixels accounted for 93.7% of the study area in southwest China. Multiple endmember spectral mixture analysis achieved high overall accuracy (80.5%) in monitoring the percentage of rocky outcrop land cover. Furthermore, the predicted exposed bedrock coverage via spectral mixture analysis were similar in sunlit and shadow areas for the same surface types. This reflected that SMA methods could effectively reduce topographic effects of satellite imagery to improve the accuracy of fractional cover extraction at sub-pixel level in heterogeneous and rugged landscapes.


Sign in / Sign up

Export Citation Format

Share Document