scholarly journals Improving Parametric Cyclonic Wind Fields Using Recent Satellite Remote Sensing Data

Author(s):  
Yann Krien ◽  
Gaël Arnaud ◽  
Raphaël Cécé ◽  
Jamal Khan ◽  
Ali Bel Madani ◽  
...  

Parametric cyclonic wind fields are widely used worldwide for insurance risk underwriting, coastal planning, or storm surge forecasts. They support high-stakes financial, development, and emergency decisions. Yet, there is still no consensus on the best parametric approach, or relevant guidance to choose among the great variety of published models. The aim of this paper is first and foremost to demonstrate that recent progresses on estimating extreme surface wind speeds from satellite remote sensing now makes it possible to select the best option with greater objectivity. In particular, we show that the Cyclone Global Navigation Satellite System (CYGNSS) mission of NASA is able to capture a substantial part of the tropical cyclones structure, and allows identifying systematic biases in a number of parametric models. Our results also suggest that none of the traditional empirical approaches can be considered as the best option in all cases. Rather, the choice of a parametric model depends on several criteria such as cyclone intensity and/or availability of wind radii information. The benefit of using satellite remote sensing data to better select a parametric model for a specific case study is tested here by simulating hurricane Maria (2017). The significant wave heights computed by a wave-current hydrodynamic coupled model are found to be in good accordance with the predictions given by the remote sensing data in terms of bias. The results and approach presented in this study should shed new light on how to handle parametric cyclonic wind models, and help the scientific community to conduct better wind, waves and surge analysis for tropical cyclones.

2018 ◽  
Vol 10 (12) ◽  
pp. 1963 ◽  
Author(s):  
Yann Krien ◽  
Gaël Arnaud ◽  
Raphaël Cécé ◽  
Chris Ruf ◽  
Ali Belmadani ◽  
...  

Parametric cyclonic wind fields are widely used worldwide for insurance risk underwriting, coastal planning, and storm surge forecasts. They support high-stakes financial, development and emergency decisions. Yet, there is still no consensus on a potentially “best” parametric approach, nor guidance to choose among the great variety of published models. The aim of this paper is to demonstrate that recent progress in estimating extreme surface wind speeds from satellite remote sensing now makes it possible to assess the performance of existing parametric models, and select a relevant one with greater objectivity. In particular, we show that the Cyclone Global Navigation Satellite System (CYGNSS) mission of NASA, along with the Advanced Scatterometer (ASCAT), are able to capture a substantial part of the tropical cyclone structure, and to aid in characterizing the strengths and weaknesses of a number of parametric models. Our results suggest that none of the traditional empirical approaches are the best option in all cases. Rather, the choice of a parametric model depends on several criteria, such as cyclone intensity and the availability of wind radii information. The benefit of using satellite remote sensing data to select a relevant parametric model for a specific case study is tested here by simulating hurricane Maria (2017). The significant wave heights computed by a wave-current hydrodynamic coupled model are found to be in good agreement with the predictions given by the remote sensing data. The results and approach presented in this study should shed new light on how to handle parametric cyclonic wind models, and help the scientific community conduct better wind, wave, and surge analyses for tropical cyclones.


Author(s):  
Yann Krien ◽  
Gaël Arnaud ◽  
Raphaël Cécé ◽  
Jamal Khan ◽  
Ali Bel Madani ◽  
...  

Parametric cyclonic wind fields are widely used worldwide for insurance risk underwriting, coastal planning, or storm surge forecasts. They support high-stakes financial, development, and emergency decisions. Yet, there is still no consensus on the best parametric approach, or relevant guidance to choose among the great variety of published models. The aim of this paper is first and foremost to demonstrate that recent progresses on estimating extreme surface wind speeds from satellite remote sensing now makes it possible to select the best option with greater objectivity. In particular, we show that the Cyclone Global Navigation Satellite System (CYGNSS) mission of NASA is able to capture a substantial part of the tropical cyclones structure, and allows identifying systematic biases in a number of parametric models. Our results also suggest that none of the traditional empirical approaches can be considered as the best option in all cases. Rather, the choice of a parametric model depends on several criteria such as cyclone intensity and/or availability of wind radii information. The benefit of our approach is demonstrated by comparing traditional models with an improved vortex for hurricane Maria in the Caribbean. The wave heights computed by a wave-current hydrodynamic coupled model are found to be much better reproduced, with a significant reduction of the model biases. The results and approach presented in this study should shed new light on how to handle parametric cyclonic wind models. This will help the scientific community to conduct better wind, waves and surge analysis for tropical cyclones.


2009 ◽  
Author(s):  
Bingfeng Yang ◽  
Qiao Wang ◽  
Changzuo Wang ◽  
Huawei Wan ◽  
Yipeng Yang ◽  
...  

Eos ◽  
2017 ◽  
Author(s):  
Zhong Liu ◽  
James Acker

Using satellite remote sensing data sets can be a daunting task. Giovanni, a Web-based tool, facilitates access, visualization, and exploration for many of NASA’s Earth science data sets.


Sign in / Sign up

Export Citation Format

Share Document