scholarly journals Improving Parametric Cyclonic Wind Fields Using Recent Satellite Remote Sensing Data

Author(s):  
Yann Krien ◽  
Gaël Arnaud ◽  
Raphaël Cécé ◽  
Jamal Khan ◽  
Ali Bel Madani ◽  
...  

Parametric cyclonic wind fields are widely used worldwide for insurance risk underwriting, coastal planning, or storm surge forecasts. They support high-stakes financial, development, and emergency decisions. Yet, there is still no consensus on the best parametric approach, or relevant guidance to choose among the great variety of published models. The aim of this paper is first and foremost to demonstrate that recent progresses on estimating extreme surface wind speeds from satellite remote sensing now makes it possible to select the best option with greater objectivity. In particular, we show that the Cyclone Global Navigation Satellite System (CYGNSS) mission of NASA is able to capture a substantial part of the tropical cyclones structure, and allows identifying systematic biases in a number of parametric models. Our results also suggest that none of the traditional empirical approaches can be considered as the best option in all cases. Rather, the choice of a parametric model depends on several criteria such as cyclone intensity and/or availability of wind radii information. The benefit of our approach is demonstrated by comparing traditional models with an improved vortex for hurricane Maria in the Caribbean. The wave heights computed by a wave-current hydrodynamic coupled model are found to be much better reproduced, with a significant reduction of the model biases. The results and approach presented in this study should shed new light on how to handle parametric cyclonic wind models. This will help the scientific community to conduct better wind, waves and surge analysis for tropical cyclones.

2018 ◽  
Vol 10 (12) ◽  
pp. 1963 ◽  
Author(s):  
Yann Krien ◽  
Gaël Arnaud ◽  
Raphaël Cécé ◽  
Chris Ruf ◽  
Ali Belmadani ◽  
...  

Parametric cyclonic wind fields are widely used worldwide for insurance risk underwriting, coastal planning, and storm surge forecasts. They support high-stakes financial, development and emergency decisions. Yet, there is still no consensus on a potentially “best” parametric approach, nor guidance to choose among the great variety of published models. The aim of this paper is to demonstrate that recent progress in estimating extreme surface wind speeds from satellite remote sensing now makes it possible to assess the performance of existing parametric models, and select a relevant one with greater objectivity. In particular, we show that the Cyclone Global Navigation Satellite System (CYGNSS) mission of NASA, along with the Advanced Scatterometer (ASCAT), are able to capture a substantial part of the tropical cyclone structure, and to aid in characterizing the strengths and weaknesses of a number of parametric models. Our results suggest that none of the traditional empirical approaches are the best option in all cases. Rather, the choice of a parametric model depends on several criteria, such as cyclone intensity and the availability of wind radii information. The benefit of using satellite remote sensing data to select a relevant parametric model for a specific case study is tested here by simulating hurricane Maria (2017). The significant wave heights computed by a wave-current hydrodynamic coupled model are found to be in good agreement with the predictions given by the remote sensing data. The results and approach presented in this study should shed new light on how to handle parametric cyclonic wind models, and help the scientific community conduct better wind, wave, and surge analyses for tropical cyclones.


Author(s):  
Yann Krien ◽  
Gaël Arnaud ◽  
Raphaël Cécé ◽  
Jamal Khan ◽  
Ali Bel Madani ◽  
...  

Parametric cyclonic wind fields are widely used worldwide for insurance risk underwriting, coastal planning, or storm surge forecasts. They support high-stakes financial, development, and emergency decisions. Yet, there is still no consensus on the best parametric approach, or relevant guidance to choose among the great variety of published models. The aim of this paper is first and foremost to demonstrate that recent progresses on estimating extreme surface wind speeds from satellite remote sensing now makes it possible to select the best option with greater objectivity. In particular, we show that the Cyclone Global Navigation Satellite System (CYGNSS) mission of NASA is able to capture a substantial part of the tropical cyclones structure, and allows identifying systematic biases in a number of parametric models. Our results also suggest that none of the traditional empirical approaches can be considered as the best option in all cases. Rather, the choice of a parametric model depends on several criteria such as cyclone intensity and/or availability of wind radii information. The benefit of using satellite remote sensing data to better select a parametric model for a specific case study is tested here by simulating hurricane Maria (2017). The significant wave heights computed by a wave-current hydrodynamic coupled model are found to be in good accordance with the predictions given by the remote sensing data in terms of bias. The results and approach presented in this study should shed new light on how to handle parametric cyclonic wind models, and help the scientific community to conduct better wind, waves and surge analysis for tropical cyclones.


Author(s):  
H. Lilienthal ◽  
A. Brauer ◽  
K. Betteridge ◽  
E. Schnug

Conversion of native vegetation into farmed grassland in the Lake Taupo catchment commenced in the late 1950s. The lake's iconic value is being threatened by the slow decline in lake water quality that has become apparent since the 1970s. Keywords: satellite remote sensing, nitrate leaching, land use change, livestock farming, land management


1996 ◽  
pp. 51-54 ◽  
Author(s):  
N. V. M. Unni

The recognition of versatile importance of vegetation for the human life resulted in the emergence of vegetation science and many its applications in the modern world. Hence a vegetation map should be versatile enough to provide the basis for these applications. Thus, a vegetation map should contain not only information on vegetation types and their derivatives but also the geospheric and climatic background. While the geospheric information could be obtained, mapped and generalized directly using satellite remote sensing, a computerized Geographic Information System can integrate it with meaningful vegetation information classes for large areas. Such aft approach was developed with respect to mapping forest vegetation in India at. 1 : 100 000 (1983) and is in progress now (forest cover mapping at 1 : 250 000). Several review works reporting the experimental and operational use of satellite remote sensing data in India were published in the last years (Unni, 1991, 1992, 1994).


Author(s):  
Nathalie Pettorelli

This book intends to familiarise prospective users in the environmental community with satellite remote sensing technology and its applications, introducing terminology and principles behind satellite remote sensing data and analyses. It provides a detailed overview of the possible applications of satellite data in natural resource management, demonstrating how ecological knowledge and satellite-based information can be effectively combined to address a wide array of current natural resource management needs. Topics considered include the use of satellite data to monitor the various dimensions of biodiversity; the use of this technology to track pressures on biodiversity such as invasive species, pollution, and illegal fishing; the utility of satellite remote sensing to inform the management of protected areas, translocation, and habitat restoration; and the contribution of satellite remote sensing towards the monitoring of ecosystem services and wellbeing. The intended audience is ecologists and environmental scientists; the book is targeted as a handbook and is therefore also suitable for advanced undergraduate and postgraduate students in the biological and ecological sciences, as well as policy makers and specialists in the fields of conservation biology, biodiversity monitoring, and natural resource management. The book assumes no prior technical knowledge of satellite remote sensing systems and products. It is written so as to generate interest in the ecological, environmental management, and remote sensing communities, highlighting issues associated with the emergence of truly synergistic approaches between these disciplines.


Sign in / Sign up

Export Citation Format

Share Document