scholarly journals Wastewater Remediation Using Microbial Fuel Cells and Bioenergy Production

Author(s):  
Balaji B. Prasath ◽  
Karen Poon

Microbial Fuel Cells (MFCs) representing a promising technology for the extract of energy and resources through wastewater and it also offer an economic solution to the problem of environment effluent and energy crisis in near future. The advance device is rather appealing, due its potential benefits, its practical application is, however hindered by several drawbacks, such an internally competing microbial reaction, and low power generation. This report is an endeavor to address various design connected to the MFCs application to wastewater treatment, in particular cost effective bioelectricity from waste water are reviewed and discussed with a multidisciplinary approach. The conclusions drawn herein can be of practical interest to all new researchers dealing with effluent wastewater treatment using MFCs.

2021 ◽  
Vol 775 ◽  
pp. 145904
Author(s):  
Jaecheul Yu ◽  
Younghyun Park ◽  
Evy Widyaningsih ◽  
Sunah Kim ◽  
Younggy Kim ◽  
...  

2008 ◽  
Vol 78 (5) ◽  
pp. 873-880 ◽  
Author(s):  
Yujie Feng ◽  
Xin Wang ◽  
Bruce E. Logan ◽  
He Lee

2020 ◽  
Vol 202 ◽  
pp. 08007
Author(s):  
Wahyu Zuli Pratiwi ◽  
Hadiyanto Hadiyanto ◽  
Purwanto Purwanto ◽  
Muthi’ah Nur Fadlilah

Microalgae-Microbial Fuel Cells (MMFCs) are very popular to be used to treat organic waste. MMFCs can function as an energy-producing wastewater pre-treatment system. Wastewater can provide an adequate supply of nutrients, support the large capacity of biofuel production, and can be integrated with existing wastewater treatment infrastructure. The reduced content of Chemical Oxygen Demand (COD) is one way to measure the efficiency of wastewater treatment. MMFCs reactors are made in the form of two chambers (anode and cathode) both of which are connected by a salt bridge. Tofu wastewater as an anode and Spirulina sp as a cathode. To improve MFCs performance which is to obtain maximum COD removal and electricity generation, nutrient NaHCO3 as the nutrient carbon source for Spirulina sp was varied. The system running phase on 12 days. The results were Spirulina sp treated with MFCs technology has better growth than non-MFCs. The MMFC generated a maximum power density of 21.728 mW/cm2 and achieved 57.37% COD removal. These results showed that the combined process was effective in treating tofu wastewater.


Author(s):  
María Jose Salar-García ◽  
Víctor Manuel Ortiz-Martínez ◽  
Antonia Pérez de los Ríos ◽  
Francisco José Hernández-Fernández

2020 ◽  
Vol 11 ◽  
pp. 100420 ◽  
Author(s):  
Sarah Brunschweiger ◽  
Emile Tabu Ojong ◽  
Jana Weisser ◽  
Christian Schwaferts ◽  
Martin Elsner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document