scholarly journals The Third Laplace-Beltrami Operator of the Rotational Hypersurface in 4-Space

Author(s):  
Erhan Güler

We consider rotational hypersurface in the four dimensional Euclidean space. We calculate the mean curvature and the Gaussian curvature, and some relations of the rotational hypersurface. Moreover, we define the third Laplace-Beltrami operator and apply it to the rotational hypersurface.

2006 ◽  
Vol 37 (3) ◽  
pp. 221-226 ◽  
Author(s):  
Dae Won Yoon

In this paper, we mainly investigate non developable ruled surface in a 3-dimensional Euclidean space satisfying the equation $K_{II} = KH$ along each ruling, where $K$ is the Gaussian curvature, $H$ is the mean curvature and $K_{II}$ is the second Gaussian curvature.


Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 398 ◽  
Author(s):  
Erhan Güler ◽  
Hasan Hacısalihoğlu ◽  
Young Kim

We study and examine the rotational hypersurface and its Gauss map in Euclidean four-space E 4 . We calculate the Gauss map, the mean curvature and the Gaussian curvature of the rotational hypersurface and obtain some results. Then, we introduce the third Laplace–Beltrami operator. Moreover, we calculate the third Laplace–Beltrami operator of the rotational hypersurface in E 4 . We also draw some figures of the rotational hypersurface.


2021 ◽  
Vol 29 (1) ◽  
pp. 219-233
Author(s):  
Neslihan Ulucan ◽  
Mahmut Akyigit

Abstract In this paper, offset ruled surfaces in these spaces are defined by using the geometry of ruled surfaces in Euclidean space with density. The mean curvature and Gaussian curvature of these surfaces are studied. In addition, the relationships between the mean curvature and mean curvature with density, and the Gaussian curvature and the Gaussian curvature with density of the offset ruled surfaces in E 3 with density e z and e − x 2− y 2 are given.


1993 ◽  
Vol 07 (27) ◽  
pp. 4615-4629
Author(s):  
U. MARINI BETTOLO MARCONI ◽  
A. MARITAN

D-dimensional elastic networks randomly embedded in a d>D dimensional euclidean space, are studied employing Hartree (Gaussian) approximation. In presence of an energy depending on the mean curvature this approach leads to the prediction of a phase transition between a flat and a crumpled regime as the bending rigidity decreases in agreement with previous approximate calculations.


1981 ◽  
Vol 23 (2) ◽  
pp. 249-253 ◽  
Author(s):  
George Stamou

The notion of “mean II-curvature” of a C4-surface (without parabolic points) in the three-dimensional Euclidean space has been introduced by Ekkehart Glässner. The aim of this note is to give some global characterizations of the sphere related to the above notion.In the three-dimensional Euclidean space E3 we consider a sufficiently smooth ovaloid S (closed convex surface) with Gaussian curvature K > 0 . The ovaloid S possesses a positive definite second fundamental form II, if appropriately oriented. During the last years several authors have been concerned with the problem of characterizations of the sphere by the curvature of the second fundamental form of S. In this paper we give some characterizations of the sphere using the concept of the mean II-curvatureHII (of S), defined by Ekkehart Glässner.


Author(s):  
Wenmao Yang

AbstractIn this paper we consider O. Bonnet III-isometry (or BIII-isometry) of surfaces in 3-dimensional Euclidean space E3 Suppose a map F: M → M* is a diffeomorphism, and F* (III*) = III, ki(m) = k*i (m*), i = 1, 2, where m ∈ M, m* ∈ M*, m* = F (m), ki and k*i are the principal curvatures of surfaces M and M* at the points m and m*, respectively, III and III* are the third fundmental forms of M and M*, respectively. In this case, we call F an O. Bonnet III-isometry from M to M*. O. Bonnet I-isometries were considered in references [1]-[5].We distinguish three cases about BIII-surfaces, which admits a non-trivial BIII-ismetry. We obtain some geometric properties of BIII-surfaces and BIII-isometries in these three cases; see Theorems 1, 2, 3 (in Section 2). We study some special BIII-surfaces: the minimal BIII-surfaces; BIII-surfaces of revolution; and BIII-surfaces with constant Gaussian curvature; see Theorems 4, 5, 6 (in Section 3).


Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 226 ◽  
Author(s):  
Erhan Güler

We consider a new kind of helicoidal surface for natural numbers ( m , n ) in the three-dimensional Euclidean space. We study a helicoidal surface of value ( m , n ) , which is locally isometric to a rotational surface of value ( m , n ) . In addition, we calculate the Laplace–Beltrami operator of the rotational surface of value ( 0 , 1 ) .


1985 ◽  
Vol 100 ◽  
pp. 135-143 ◽  
Author(s):  
Kazuyuki Enomoto

Let ϕ: M → RN be an isometric imbedding of a compact, connected surface M into a Euclidean space RN. ψ is said to be umbilical at a point p of M if all principal curvatures are equal for any normal direction. It is known that if the Euler characteristic of M is not zero and N = 3, then ψ is umbilical at some point on M. In this paper we study umbilical points of surfaces of higher codimension. In Theorem 1, we show that if M is homeomorphic to either a 2-sphere or a 2-dimensional projective space and if the normal connection of ψ is flat, then ψ is umbilical at some point on M. In Section 2, we consider a surface M whose Gaussian curvature is positive constant. If the surface is compact and N = 3, Liebmann’s theorem says that it must be a round sphere. However, if N ≥ 4, the surface is not rigid: For any isometric imbedding Φ of R3 into R4 Φ(S2(r)) is a compact surface of constant positive Gaussian curvature 1/r2. We use Theorem 1 to show that if the normal connection of ψ is flat and the length of the mean curvature vector of ψ is constant, then ψ(M) is a round sphere in some R3 ⊂ RN. When N = 4, our conditions on ψ is satisfied if the mean curvature vector is parallel with respect to the normal connection. Our theorem fails if the surface is not compact, while the corresponding theorem holds locally for a surface with parallel mean curvature vector (See Remark (i) in Section 3).


1972 ◽  
Vol 45 ◽  
pp. 139-165 ◽  
Author(s):  
Joseph Erbacher

In a recent paper [2] Nomizu and Smyth have determined the hypersurfaces Mn of non-negative sectional curvature iso-metrically immersed in the Euclidean space Rn+1 or the sphere Sn+1 with constant mean curvature under the additional assumption that the scalar curvature of Mn is constant. This additional assumption is automatically satisfied if Mn is compact. In this paper we extend these results to codimension p isometric immersions. We determine the n-dimensional submanifolds Mn of non-negative sectional curvature isometrically immersed in the Euclidean Space Rn+P or the sphere Sn+P with constant mean curvature under the additional assumptions that Mn has constant scalar curvature and the curvature tensor of the connection in the normal bundle is zero. By constant mean curvature we mean that the mean curvature normal is paral lel with respect to the connection in the normal bundle. The assumption that Mn has constant scalar curvature is automatically satisfied if Mn is compact. The assumption on the normal connection is automatically sa tisfied if p = 2 and the mean curvature normal is not zero.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1211 ◽  
Author(s):  
Rafael López

We investigate the differences and similarities of the Dirichlet problem of the mean curvature equation in the Euclidean space and in the Lorentz-Minkowski space. Although the solvability of the Dirichlet problem follows standards techniques of elliptic equations, we focus in showing how the spacelike condition in the Lorentz-Minkowski space allows dropping the hypothesis on the mean convexity, which is required in the Euclidean case.


Sign in / Sign up

Export Citation Format

Share Document