VARIATIONAL APPROACH TO THE PHASE DIAGRAM OF RIGID MEMBRANES

1993 ◽  
Vol 07 (27) ◽  
pp. 4615-4629
Author(s):  
U. MARINI BETTOLO MARCONI ◽  
A. MARITAN

D-dimensional elastic networks randomly embedded in a d>D dimensional euclidean space, are studied employing Hartree (Gaussian) approximation. In presence of an energy depending on the mean curvature this approach leads to the prediction of a phase transition between a flat and a crumpled regime as the bending rigidity decreases in agreement with previous approximate calculations.

2006 ◽  
Vol 37 (3) ◽  
pp. 221-226 ◽  
Author(s):  
Dae Won Yoon

In this paper, we mainly investigate non developable ruled surface in a 3-dimensional Euclidean space satisfying the equation $K_{II} = KH$ along each ruling, where $K$ is the Gaussian curvature, $H$ is the mean curvature and $K_{II}$ is the second Gaussian curvature.


Author(s):  
Erhan Güler

We consider rotational hypersurface in the four dimensional Euclidean space. We calculate the mean curvature and the Gaussian curvature, and some relations of the rotational hypersurface. Moreover, we define the third Laplace-Beltrami operator and apply it to the rotational hypersurface.


2021 ◽  
Vol 29 (1) ◽  
pp. 5-14
Author(s):  
D. Anchishkin ◽  
V. Gnatovskyy ◽  
D. Zhuravel ◽  
V. Karpenko

A system of interacting relativistic bosons at finite temperatures and isospin densities is studied within the framework of the Skyrme­like mean­field model. The mean field contains both attractive and repulsive terms. The consideration is taken within the framework of the Canonical Ensemble and the isospin­density dependencies of thermodynamic quantities is obtained, in particular as the phase diagrams. It is shown that in such a system, in addition to the formation of a Bose­Einstein condensate, a liquid­gas phase transition is possible. We prove that the multi­boson system develops the Bose condensate for particles of high­density component only.


1972 ◽  
Vol 45 ◽  
pp. 139-165 ◽  
Author(s):  
Joseph Erbacher

In a recent paper [2] Nomizu and Smyth have determined the hypersurfaces Mn of non-negative sectional curvature iso-metrically immersed in the Euclidean space Rn+1 or the sphere Sn+1 with constant mean curvature under the additional assumption that the scalar curvature of Mn is constant. This additional assumption is automatically satisfied if Mn is compact. In this paper we extend these results to codimension p isometric immersions. We determine the n-dimensional submanifolds Mn of non-negative sectional curvature isometrically immersed in the Euclidean Space Rn+P or the sphere Sn+P with constant mean curvature under the additional assumptions that Mn has constant scalar curvature and the curvature tensor of the connection in the normal bundle is zero. By constant mean curvature we mean that the mean curvature normal is paral lel with respect to the connection in the normal bundle. The assumption that Mn has constant scalar curvature is automatically satisfied if Mn is compact. The assumption on the normal connection is automatically sa tisfied if p = 2 and the mean curvature normal is not zero.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1211 ◽  
Author(s):  
Rafael López

We investigate the differences and similarities of the Dirichlet problem of the mean curvature equation in the Euclidean space and in the Lorentz-Minkowski space. Although the solvability of the Dirichlet problem follows standards techniques of elliptic equations, we focus in showing how the spacelike condition in the Lorentz-Minkowski space allows dropping the hypothesis on the mean convexity, which is required in the Euclidean case.


2017 ◽  
Vol 19 (06) ◽  
pp. 1750002 ◽  
Author(s):  
Debora Impera ◽  
Michele Rimoldi

In this paper, we obtain rigidity results and obstructions on the topology at infinity of translating solitons of the mean curvature flow in the Euclidean space. Our approach relies on the theory of [Formula: see text]-minimal hypersurfaces.


2015 ◽  
Vol 92 (1) ◽  
pp. 133-144 ◽  
Author(s):  
JULIAN SCHEUER

We prove${\it\epsilon}$-closeness of hypersurfaces to a sphere in Euclidean space under the assumption that the traceless second fundamental form is${\it\delta}$-small compared to the mean curvature. We give the explicit dependence of${\it\delta}$on${\it\epsilon}$within the class of uniformly convex hypersurfaces with bounded volume.


2020 ◽  
Vol 31 (05) ◽  
pp. 2050035
Author(s):  
Yong Luo ◽  
Hongbing Qiu

By using the integral method, we prove a rigidity theorem for spacelike self-shrinkers in pseudo-Euclidean space under a minor growth condition in terms of the mean curvature and the second fundamental form, which generalizes Theorem 1.1 in [H. Q. Liu and Y. L. Xin, Some Results on Space-Like Self-Shrinkers, Acta Math. Sin. (Engl. Ser.) 32(1) (2016) 69–82].


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 310
Author(s):  
L. Schulman

The observable representation (OR) is an embedding of the space on which a stochastic dynamics is taking place into a low dimensional Euclidean space. The most significant feature of the OR is that it respects the dynamics. Examples are given in several areas: the definition of a phase transition (including metastable phases), random walks in which the OR recovers the original space, complex systems, systems in which the number of extrema exceed convenient viewing capacity, and systems in which successful features are displayed, but without the support of known theorems.


1995 ◽  
Vol 37 (2) ◽  
pp. 233-242 ◽  
Author(s):  
Shi-Jie Li

Let M be an n-dimensional connected submanifold in an mdimensional Euclidean space Em. Denote by δ the Laplacian of M associated with the induced metric. Then the position vector x and the mean curvature vector H of Min Em satisfyThis yields the following fact: a submanifold M in Em is minimal if and only if all coordinate functions of Em, restricted to M, are harmonic functions. In other words, minimal submanifolds in Emare constructed from eigenfunctions of δ with one eigenvalue 0. By using (1. 1), T. Takahashi proved that minimal submanifolds of a hypersphere of Em are constructed from eigenfunctions of δ with one eigenvalue δ (≠0). In [3, 4], Chen initiated the study of submanifolds in Em which are constructed from harmonic functions and eigenfunctions of δ with a nonzero eigenvalue. The position vector x of such a submanifold admits the following simple spectral decomposition:for some non-constant maps x0and xq, where A is a nonzero constant. He simply calls such a submanifold a submanifold of null 2-type.


Sign in / Sign up

Export Citation Format

Share Document