scholarly journals Display In the Wild (DIW): An Adaptive Projection-Imaging System to Screen Geometry in Real Time

Author(s):  
Byungyong Ryu ◽  
Sung-Ho Bae

TVs and monitors are among the most widely used displays in various environments. However, they have limitations in their physical display conditions, such as a fixed size/position and a rigid/flat space. In this paper, we suggest a new "Display In the Wild" (DIW) concept to overcome the aforementioned problems. Our proposed DIW system allows us to display a flexibly large screen on dynamic non-planar surfaces at an arbitrary display position. To implement our DIW concept practically, we choose a projector as the hardware configuration in order to a generate screen anywhere with different sizes. However, distortion occurs when the projector displays content on a surface that is dynamic and/or non-planar. Therefore, we propose a distortion correction method for DIW to overcome the aforementioned surface-constraints. Since projectors are not capture devices, we propose using a depth camera to determine the distortions on the surfaces quickly. We also propose DIW-specific calibration and fast/precise correction methods. Our calibration method is constructed to easily and quickly detect the projection surface, and also allows our proposed system to accommodate the intrinsic parameters such as a display resolution and field of view. We accomplish a fast undistortion process of the projector by considering only surface boundary pixels, which enables our method to run in real time. In our comprehensive experiments, the proposed DIW system generates undistorted screens such as TVs and monitors on dynamic non-planar surfaces at an arbitrary display position with Unmanned Aerial Vehicles (UAVs) in a fast and accurate manner, demonstrating its usefullness in practical DIW scenarios.

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3063
Author(s):  
Byungyong Ryu ◽  
Sung-Ho Bae

TVs and monitors are among the most widely used displays in various environments. However, they have limitations in their physical display conditions, such as a fixed size/position and a rigid/flat space. In this paper, we suggest a new “Display in the Wild” (DIW) concept to overcome the aforementioned problems. Our proposed DIW system allows us to display a flexibly large screen on dynamic non-planar surfaces at an arbitrary display position. To implement our DIW concept practically, we choose a projector as the hardware configuration in order to generate a screen anywhere with different sizes. However, distortion occurs when the projector displays content on a surface that is dynamic and/or non-planar. Therefore, we propose a distortion correction method for DIW to overcome the aforementioned surface constraints. Since projectors are not capture devices, we propose using a depth camera to determine the distortions on the surfaces quickly. We also propose DIW-specific calibration and fast/precise correction methods. Our calibration method is constructed to detect the projection surface easily and quickly, and also allows our proposed system to accommodate the intrinsic parameters such as a display resolution and field of view. We accomplish a fast undistortion process of the projector by considering only surface boundary pixels, which enables our method to run in real time. In our comprehensive experiments, the proposed DIW system generates undistorted screens such as TVs and monitors on dynamic non-planar surfaces at an arbitrary display position with Unmanned Aerial Vehicles (UAVs) in a fast and accurate manner, demonstrating its usefulness in practical DIW scenarios.


2017 ◽  
Vol 14 (3) ◽  
pp. 429-433 ◽  
Author(s):  
Chengfei Gu ◽  
Wenge Chang ◽  
Xiangyang Li ◽  
Gaowei Jia ◽  
Xinqun Luan

2009 ◽  
Author(s):  
Min Yang ◽  
Hao Chen ◽  
Jun-Jiang Li ◽  
Yuan Wang ◽  
Cheng-xin Zhang

2013 ◽  
Vol 427-429 ◽  
pp. 1068-1071
Author(s):  
Peng Fei Li ◽  
Zhi Hui Du ◽  
Xing Fu Li ◽  
Yong Qiang Liu

Nonuniformity of Infrared Focal Plane Array (IRFPA) has greatly limited the quality of infrared imaging system, so nonuniformity must be corrected before using IRFPA. In order to reduce nonuniformity correction calculating amount and improve real-time nonuniformity correction speed, a new compressing correction method of utilizing hardware memory is presented. In this paper, memory compressing correction principle and implementing process are expounded in detail, and the hardware circuit diagram is given out. The experimental results prove that the method has simple circuit and excellent image quality and it easily realizes real-time nonuniformity correction.


2013 ◽  
Vol 427-429 ◽  
pp. 680-685 ◽  
Author(s):  
Fu Qiang Peng ◽  
Qiang Chen ◽  
Jun Wei Bao

Single Reflector Panoramic Imaging System (SRPIS) has been widely used because of its advantages such as simple structure, fast imaging, integration and miniaturization. It can observe objects around the reflector mirror, which fits for the quality inspection of gun barrel bore. However, its images often suffer from serious distortions in radial and tangential directions. Therefore, to ensure the accuracy of captured images, distortion must be eliminated. In this paper, a distortion correction method is proposed based on the imaging characteristics of SRPIS. Firstly the relationship between the height of a certain point on the gun barrel bore and the radius of image point is derived. Then the correction model is built based on the relationship. Aiming at the captured annular image, a new chessboard corner detection algorithm is proposed. The correction parameters are obtained by using the algorithm according to the labeled image. The real experiment results demonstrate that the correction effects of radial and tangential distortions are satisfactory. The error is controlled at sub-pixel level.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hao Zhu ◽  
Mulan Wang ◽  
Weiye Xu

In binocular vision inspection system, the calibration of detection equipment is the basis to ensure the subsequent detection accuracy. The current calibration methods have the disadvantages of complex calculation, low precision, and poor operability. In order to solve the above problems, the calibration method of binocular camera, the correction method of lens distortion, and the calibration method of projector in the binocular vision system based on surface structured light are studied in this paper. For lens distortion correction, on the basis of analyzing the traditional correction methods, a distortion correction method based on radial basis function neural network is proposed. Using the excellent nonlinear mapping ability of RBF neural network, the distortion correction models of different lenses can be obtained quickly. It overcomes the defect that the traditional correction model cannot adjust adaptively with the type of lens. The experimental results show that the accuracy of the method can meet the requirements of system calibration.


2011 ◽  
Vol 474-476 ◽  
pp. 277-282
Author(s):  
Bing Li ◽  
Zheng Yu Yang ◽  
Bao Ma

<b>N</b>on-uniformity of infrared focal plane arrays (IRFPA) decreases the quality of the infrared imaging system greatly, so it is necessary to correct non-uniformity. Now the scene-based correction is being the focus of the study at home and abroad. Firstly, researching on normalized BP artificial neural network correction method in this paper, and then building a SOPC system on Altera's Stratix II EP2S60 DSP Development Board to realize the normalized BP real-time correction non-uniformity. The simulation results show that the SOPC system would meet the requirements of real-time correction. At the same time, the other method could be better to upgrade.


2002 ◽  
Vol 24 (3) ◽  
pp. 161-176 ◽  
Author(s):  
Yanning Zhu ◽  
Timothy J. Hall

This manuscript reports a technical innovation that has been developed for real-time, freehand strain imaging. This work is based on a well-known block-matching algorithm with two significant modifications. First, since displacements are estimated row-by-row, displacement estimates from the previous row are used to predict the displacement estimates in the current row, thereby drastically reducing the search-region size and increasing computational efficiency. Second, a displacement error detection and correction method is developed to overcome the local tracking errors that may be more severe with freehand scanning and thereby improve the robustness of the algorithm. This algorithm has been implemented on a clinical ultrasound imaging system, and with real-time imaging feedback, long sequences of high quality strain images are observed using freehand compression. Displacement estimation errors with this method are experimentally measured and compared with results from simulation. We report only a specific implementation, with no comparison to other displacement estimators in the literature and no optimization of this specific technique. Images of tissue-mimicking phantoms with small spherical targets are used to test the ability to detect small lesions using the strain imaging technique. In vivo strain images of breast and thyroid are also shown.


Sign in / Sign up

Export Citation Format

Share Document