A Comparative Study of Hydroxyapatite Coating Produced with Plasma Electrolytic Oxidation and Hydrothermal Treatment on Titanium Alloys: Ti6Al4V and Ti6Al7Nb for Dental Implants
Ti and Ti alloys are materials usually used in contact with hard tissue for applications such as artificial joints and dental implants. Ti6Al4V is a very common alloy used for dental implants, owing to its good mechanical properties and corrosion resistance. Nevertheless, because of uncertainties regarding the toxicity of vanadium and its influence on the human body, other Ti alloys containing no vanadium and retaining suitable properties are used. In this work Ti6Al4V and Ti6Al7Nb were oxidized in a water solution of calcium acetate (Ca(CH3COO)2) and calcium glycerophosphate (Ca(PO4CH(CH2OH)2) by Plasma Electrolytic Oxidation (PEO) for 20 minutes and then were hydrothermally treated (HTT) in water (pH=7) and in potassium hydroxide (KOH) solution (pH=11) for 2 hours at 200°C in a pressurized reactor. The surface morphologies, elemental composition and phase components were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Diffraction (XRD), respectively. The surface roughness was measured by Atomic Force Microscope (AFM) and thickness measurements were made by SEM and thickness gauge. Also, corrosion tests were made to evaluate the corrosion behavior of the two alloys. The aim of this study is to compare two viable Ti alloys, Ti6Al4V and Ti6Al7Nb, and to attain on their surface hydroxyapatite (HA) coating improving the osseointegration, as it simulates a human bone.