Effect of Potassium Hydroxide on Geotechnical Properties of Biomass Fuel Ash Stabilized Lateritic Soil

2021 ◽  
Vol 107 ◽  
pp. 85-96
Author(s):  
Joseph A. Ige

This study assessed the effect of potassium hydroxide on geotechnical properties of Biomass fuel ash stabilized lateritic soil. In-situ tests were conducted on the original soil sample for identification and classification purposes. The soil sample was classified as A-2-6. Thereafter, the soil sample was mixed with both Biomass fuel ash and Potassium hydroxide at percentages of 0, 5, 10, 15 and 0, 3, 6, 9 respectively. These were later subjected to various tests such as natural moisture content, specific gravity, sieve analysis, Atterberg limit and compaction .The result showed that the addition of Biomass fuel ash increases the Plastic limit but decreases the plasticity index of the lateritic soil. Similarly, the addition of potassium hydroxide increases the plastic limit while the plasticity index decreases.The addition of Biomass fuel ash increases the optimum moisture content while the maximum dry density decreases. Similarly, the addition of potassium hydroxide increases the optimum moisture content however the maximum dry density decreases. It could be concluded that both Biomass fuel ash and Potassium hydroxide perform satisfactorily as stabilizing agents for stabilizing lateritic soil especially for subgrade and sub base purposes in road construction

Author(s):  
I. O Ameen

This study investigated the impact of compactive efforts on A-7-5 lateritic soil stabilized with Bamboo Leaf Ash (BLA) mixed with lime. Preliminary tests were conducted on the soil sample for identification and classification. Compaction tests (using British Standard Light (BSL), British Standard Heavy (BSH) and West Africa Standard (WAS) compactive efforts) were performed on the sample in both natural and stabilized states by incorporating 2, 4, 6 and 8% Bamboo Leaf Ash mixed together with 1, 2, and 3% lime by weight of soil sample. Maximum dry density (MDD) increased to 1766 kg/m3 at 3% lime and 6% BLA, 1818 kg/m3 at 3% lime and 8% BLA and 1866 kg/m3 at 3% lime and 2% BLA while the optimum moisture content decreased to 12.70% at 3% and lime 8% BLA, 11.40% at 2% lime 6% BLA and 11.12% at 3% lime and 2% BLA for BSL, WAS and BSH, respectively. Based on these findings, the addition of lime-BLA enhanced the soil and has a promising prospect for stabilization of lateritic soil.


2016 ◽  
Vol 2 (11) ◽  
pp. 568-575 ◽  
Author(s):  
Emeka Segun Nnochiri ◽  
Olumide Moses Ogundipe

This study assesses the geotechnical properties of lateritic soil stabilized with Ground-nut Husk Ash. Preliminary tests were carried out on the natural soil sample for identification and classification purposes, while consistency limits tests were thereafter carried out as well. Engineering property tests such as California Bearing Ratio (CBR), Unconfined Compressive Strength (UCS) and compaction tests were performed on both the natural soil sample and the stabilized lateritic soil, which was stabilized by adding Ground-nut Husk Ash, GHA, in percentages of 2, 4, 6, 8 and 10 by weight of the soil.  The results showed that the addition of GHA enhanced the strength of the soil sample. The Maximum Dry Density (MDD) reduced from 1960 kg/m3 to 1760 kg/m3 at 10% GHA by weight of soil. The Optimum Moisture Content (OMC) increased from 12.70% to 14.95%, also at 10% GHA by weight of soil. The unsoaked CBR values increased from 24.42% to 72.88% finally, the UCS values increased from 510.25 kN/m2 to 1186.46 kN/m2, for both CBR and UCS, the values were at 10% GHA by weight of soil. It was therefore concluded that GHA performs satisfactorily as a cheap stabilizing agent for stabilizing lateritic soil especially for subgrade and sub base purposes in road construction.


2020 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
G.O Adunoye ◽  
A.A Ojo ◽  
A.F Alasia ◽  
M.O Olarewaju

The importance of soil compaction for civil engineering construction and application cannot be over-emphasised. To perform soil compaction, numerous number of samples are required, with considerable time and laborious laboratory activities. This has necessitated the need to find models for the prediction of compaction characteristics, using easily determined soil properties. This work therefore undertook a study of the correlation potential of compaction characteristics and Atterberg limits of soils, with a view to modelling compaction characteristics, using Atterberg limits. To achieve this aim, soil samples were obtained from selected locations within Obafemi Awolowo University campus, Ile-Ife, Nigeria. Preliminary, Atterberg limits and compaction tests were conducted on the soil samples, using standard procedure. Using Microsoft Excel and Xuru’s Regression tool, the laboratory test results were used to develop relationships between compaction characteristics (optimum moisture content and maximum dry density) and Atterberg limits (liquid limit and plastic limit). Results showed that the natural moisture content of soil samples ranged between 4.97 % and 19.72 %; liquid limit ranged between 27 % and 68 %; plastic limit ranged between 18.92 % and 63.01 %; and plasticity index ranged between 0.94 % and 14.63 %. The optimum moisture content ranged between 6.7 % and 27 %, while the maximum dry density ranged between 1560 kN/m3 and 2260 kN/m3. The results of regression analysis showed that the combination of liquid limit and plastic limit has a strong correlation with optimum moisture content (R2 = 0.870); while the combination (of liquid limit and plastic limit) showed a weak correlation with maximum dry density (R2 = 0.150). The study concluded that liquid limit and plastic limit could be used to estimate the optimum moisture content of the soils, by applying the developed relationship/equation.  


2021 ◽  
Vol 9 (1) ◽  
pp. 16-20
Author(s):  
Iyad Alkroosh ◽  
Ali Al-Robay ◽  
Prabir Sarker ◽  
Saif Alzabeebee

This paper investigates the influence of sand content on the mechanical behavior of a low plasticity clay that collected from south of Iraq (Sumer town). Samples have been prepared with sand contents of 0%, 10%, 20%, 30%, and 40% of the clay weight. Standard Proctor and unconfined compression tests have been carried out and the optimum moisture content, maximum dry density, and undrained shear strength have been determined. The results show a gradual increasing trend of the maximum dry density with the increase of the sand content up to 30%. The highest dry density reaches 1.90 g/cm3 corresponding to an optimum moisture content of 12%. In addition, this paper shows that the undrained shear strength is inversely proportional to the increase of the percentage of sand. The results of this work provide a useful addition to the literature regarding the behaviour or low plasticity clay-sand mixture.


2013 ◽  
Vol 710 ◽  
pp. 348-351
Author(s):  
Zheng Rong Zhao ◽  
Lei Wang ◽  
Hong Xia Yang

Through compaction test discussed about the compaction characteristics of expansive soil by lime modified in middle of Shandong province. The results show that the optimum moisture content is lower when the expansive soil is cured by dry compaction method, and the maximum dry density is higher. Compaction curve appeared the phenomenon of two peaks when expansive soil is cured by wet compaction method.Lime content of lime improved expansive soil, particle size composition, age and compaction function have influence on compaction curve.With the increase of the quantity of lime, the optimum moisture content increases, the maximum dry density decreases. With the age growth, the optimum moisture content increase slightly,the maximum dry density decreases slightly. The bigger the compaction work, the smaller moisture content is, the larger the maximum dry density is.


2018 ◽  
Vol 250 ◽  
pp. 01008
Author(s):  
Tuan Noor Hasanah Tuan Ismail ◽  
Siti Aimi Nadia Mohd Yusoff ◽  
Ismail Bakar ◽  
Devapriya Chitral Wijeyesekera ◽  
Adnan Zainorabidin ◽  
...  

Soils at many sites do not always have enough strength to bear the structures constructed over them and some of the soil may need to be stabilized in order to improve their geotechnical properties. In this paper, routine laboratory tests were critically carried out to investigate the efficacy of lignin in improving the strength behaviour of the soils. Two different soil samples (laterite and kaolin) were studied and mixed with different proportions of lignin (2% and 5% of dry weight of soil), respectively. Unconfined Compressive Strength (UCS) characteristics evaluated in this study were done on samples at their maximum dry density and optimum moisture content (obtained from compaction tests). The UCS tests on all the specimens were carried out after 0, 7, 15, 21 and 30 days of controlled curing. The research results showed that the addition of lignin into kaolin reduced its maximum dry density while giving progressively higher optimum moisture content. Contrarily, with the laterite soil, both maximum dry density and optimum moisture content simultaneously increased when lignin was added into the soils. The UCS results showed that the the stabilized laterite with 2% lignin continued to gain strength significantly at a fairly steady rate after 7 days. Unfortunately, lignin did not show a significant effect in kaolin.


2014 ◽  
Vol 20 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Vahid Ayan ◽  
Mukesh C. Limbachiya ◽  
Joshua R. Omer ◽  
Seyyed Masoud Nasr Azadani

Study was recently conducted at Kingston University to assess the suitability of using recycled concrete aggregate (RCA) and reclaimed asphalt pavement (RAP) in unbound subbase mixtures. The results showed that the use of 100% recycled aggregates increased the optimum moisture content and decreased the maximum dry density of the sub-base materials in comparison with natural aggregates. Moreover, the replacement of RCA by reclaimed asphalt pavement by 50% decreased the optimum moisture content and increased the maximum dry density in proportion to 100% RCA. The effects of physical properties on 0% air void and compaction curve were discussed for each type of subbase. The CBR values of the subbase materials prepared with 100%RCA is lower than subbase mixture with 100% natural aggregates. The CBR further decreased for replaced subbase with RAP so that 50%RCA + 50%RAP is not suitable for unbound subbase from the point of CBR view. In each mix the trend of CBR value was investigated in terms of water content. This research found some significant practical points to use in site works.


2012 ◽  
Vol 204-208 ◽  
pp. 1633-1637
Author(s):  
Yong Bing Wang ◽  
Guo Qiang Ying ◽  
Jian Lin Hu ◽  
Hua Wei Wei ◽  
Qian Zhang

In order to study the factors which influence the inorganic binder stabilized material’s compaction test results, different recycled material content therefore different reclaimed gradation mixtures are tested while varying the amount of cement. The experiment results show that contents of the recycled base material and the recycled surface material on the compaction test results are determined by the change of their density and water absorption ratio. Dry density of the recycled mixture increases with the increase of the reclaimed base material density. Low water absorption ratio of the recycled material reduces the reclaimed mixture’s optimum moisture content. Density of the reclaimed wearing surface material reduces the maximum dry density of the reclaimed mixture because the old wearing surface material has lower density. Its low water absorption reduces the optimum moisture content of the recycled mixture. Influence of cement content on compaction test results is the increase of the cement content can enhance the maximum dry density and optimum moisture content of the recycled material. Through the analysis of the results of the compaction test, the key factors in the recycled material compaction test are unveiled.


2014 ◽  
Vol 580-583 ◽  
pp. 278-282
Author(s):  
Ying Zi Yin ◽  
Ya Lei Wang

The main factors affecting soil compatibility include moisture content, compaction work, soil type, grading and coarse material content etc.. The effects of compaction work are as follows: the stronger compaction work is, the more larger soil dry density is. The optimum moisture content decreases with the compaction work increasing. This paper mainly studies the effect of compaction work to aeolian sand compatibility. Its lay-down thickness is about 30-50cm when we use vibratory roller to compact aeolian sand in practical engineering. This paper analysis’s and studies the maximum dry density and the optimum moisture content of aeolian sand in the middle region of Inner Mongolia, and achieves its lay-down thicknesses are 30cm,40cm,and 50cm respectively at the optimum moisture content. We use 85kg vibration-impact rammer instead of YZ 18 vibratory roller to simulate the aeolian sand compaction effect at the optimum moisture content. The specification does not specify the number of compatibility times, but it is generally 3 to 5 times in the actual project .We choose the most suitable compatibility times and lay-down thickness through anglicizing the Aeolian sand compactness for vibration-impact rammer rolling on eloign sand 3 times,4 times, and 5 times respectively at 3 different kinds of lay-down thicknesses. Through the study of the Inner Mongolia area Aeolian sand, it provides a useful reference for highway and railway construction in the desert area as well as the encapsulated layer thickness of reinforced retaining wall, a new type support structure.


Sign in / Sign up

Export Citation Format

Share Document