scholarly journals HOLMeS: eHealth in the Big Data and Deep Learning Era

Author(s):  
Flora Amato ◽  
Stefano Marrone ◽  
Vincenzo Moscato ◽  
Gabriele Piantadosi ◽  
Antonio Picariello ◽  
...  

Data collection and analysis are becoming more and more important in a variety of application domains as long as the novel technologies advance. At the same time, we are experiencing a growing need for human-machine interaction with expert systems pushing research through new knowledge representation models and interaction paradigms. In particular, in the last years eHealth - that indicates all the health-care practices supported by electronic elaboration and remote communications - calls for the availability of smart environment and big computational resources. The aim of this paper is to introduce the HOLMeS (Health On-Line Medical Suggestions) framework. The introduced system proposes to change the eHealth paradigm where a trained machine learning algorithm, deployed on a cluster-computing environment, provides medical suggestion via both chat-bot and web-app modules. The chat-bot, based on deep learning approaches, is able to overcome the limitation of biased interaction between users and software, exhibiting a human-like behavior. Results demonstrate the effectiveness of the machine learning algorithms showing 74.65% of Area Under ROC Curve (AUC) when first-level features are used to assess the occurrence of different prevention pathways. When disease-specific features are added, HOLMeS shows 86.78% of AUC achieving a more specific prevention pathway evaluation.

Information ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 34 ◽  
Author(s):  
Flora Amato ◽  
Stefano Marrone ◽  
Vincenzo Moscato ◽  
Gabriele Piantadosi ◽  
Antonio Picariello ◽  
...  

Now, data collection and analysis are becoming more and more important in a variety of application domains, as long as novel technologies advance. At the same time, we are experiencing a growing need for human–machine interaction with expert systems, pushing research toward new knowledge representation models and interaction paradigms. In particular, in the last few years, eHealth—which usually indicates all the healthcare practices supported by electronic elaboration and remote communications—calls for the availability of a smart environment and big computational resources able to offer more and more advanced analytics and new human–computer interaction paradigms. The aim of this paper is to introduce the HOLMeS (health online medical suggestions) system: A particular big data platform aiming at supporting several eHealth applications. As its main novelty/functionality, HOLMeS exploits a machine learning algorithm, deployed on a cluster-computing environment, in order to provide medical suggestions via both chat-bot and web-app modules, especially for prevention aims. The chat-bot, opportunely trained by leveraging a deep learning approach, helps to overcome the limitations of a cold interaction between users and software, exhibiting a more human-like behavior. The obtained results demonstrate the effectiveness of the machine learning algorithms, showing an area under ROC (receiver operating characteristic) curve (AUC) of 74.65% when some first-level features are used to assess the occurrence of different chronic diseases within specific prevention pathways. When disease-specific features are added, HOLMeS shows an AUC of 86.78%, achieving a greater effectiveness in supporting clinical decisions.


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


2022 ◽  
pp. 27-50
Author(s):  
Rajalaxmi Prabhu B. ◽  
Seema S.

A lot of user-generated data is available these days from huge platforms, blogs, websites, and other review sites. These data are usually unstructured. Analyzing sentiments from these data automatically is considered an important challenge. Several machine learning algorithms are implemented to check the opinions from large data sets. A lot of research has been undergone in understanding machine learning approaches to analyze sentiments. Machine learning mainly depends on the data required for model building, and hence, suitable feature exactions techniques also need to be carried. In this chapter, several deep learning approaches, its challenges, and future issues will be addressed. Deep learning techniques are considered important in predicting the sentiments of users. This chapter aims to analyze the deep-learning techniques for predicting sentiments and understanding the importance of several approaches for mining opinions and determining sentiment polarity.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Massa Baali ◽  
Nada Ghneim

Abstract Nowadays, sharing moments on social networks have become something widespread. Sharing ideas, thoughts, and good memories to express our emotions through text without using a lot of words. Twitter, for instance, is a rich source of data that is a target for organizations for which they can use to analyze people’s opinions, sentiments and emotions. Emotion analysis normally gives a more profound overview of the feelings of an author. In Arabic Social Media analysis, nearly all projects have focused on analyzing the expressions as positive, negative or neutral. In this paper we intend to categorize the expressions on the basis of emotions, namely happiness, anger, fear, and sadness. Different approaches have been carried out in the area of automatic textual emotion recognition in the case of other languages, but only a limited number were based on deep learning. Thus, we present our approach used to classify emotions in Arabic tweets. Our model implements a deep Convolutional Neural Networks (CNN) trained on top of trained word vectors specifically on our dataset for sentence classification tasks. We compared the results of this approach with three other machine learning algorithms which are SVM, NB and MLP. The architecture of our deep learning approach is an end-to-end network with word, sentence, and document vectorization steps. The deep learning proposed approach was evaluated on the Arabic tweets dataset provided by SemiEval for the EI-oc task, and the results-compared to the traditional machine learning approaches-were excellent.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7527
Author(s):  
Mugdim Bublin

Distributed Acoustic Sensing (DAS) is a promising new technology for pipeline monitoring and protection. However, a big challenge is distinguishing between relevant events, like intrusion by an excavator near the pipeline, and interference, like land machines. This paper investigates whether it is possible to achieve adequate detection accuracy with classic machine learning algorithms using simulations and real system implementation. Then, we compare classical machine learning with a deep learning approach and analyze the advantages and disadvantages of both approaches. Although acceptable performance can be achieved with both approaches, preliminary results show that deep learning is the more promising approach, eliminating the need for laborious feature extraction and offering a six times lower event detection delay and twelve times lower execution time. However, we achieved the best results by combining deep learning with the knowledge-based and classical machine learning approaches. At the end of this manuscript, we propose general guidelines for efficient system design combining knowledge-based, classical machine learning, and deep learning approaches.


2020 ◽  
Vol 12 (11) ◽  
pp. 1838 ◽  
Author(s):  
Zhao Zhang ◽  
Paulo Flores ◽  
C. Igathinathane ◽  
Dayakar L. Naik ◽  
Ravi Kiran ◽  
...  

The current mainstream approach of using manual measurements and visual inspections for crop lodging detection is inefficient, time-consuming, and subjective. An innovative method for wheat lodging detection that can overcome or alleviate these shortcomings would be welcomed. This study proposed a systematic approach for wheat lodging detection in research plots (372 experimental plots), which consisted of using unmanned aerial systems (UAS) for aerial imagery acquisition, manual field evaluation, and machine learning algorithms to detect the occurrence or not of lodging. UAS imagery was collected on three different dates (23 and 30 July 2019, and 8 August 2019) after lodging occurred. Traditional machine learning and deep learning were evaluated and compared in this study in terms of classification accuracy and standard deviation. For traditional machine learning, five types of features (i.e. gray level co-occurrence matrix, local binary pattern, Gabor, intensity, and Hu-moment) were extracted and fed into three traditional machine learning algorithms (i.e., random forest (RF), neural network, and support vector machine) for detecting lodged plots. For the datasets on each imagery collection date, the accuracies of the three algorithms were not significantly different from each other. For any of the three algorithms, accuracies on the first and last date datasets had the lowest and highest values, respectively. Incorporating standard deviation as a measurement of performance robustness, RF was determined as the most satisfactory. Regarding deep learning, three different convolutional neural networks (simple convolutional neural network, VGG-16, and GoogLeNet) were tested. For any of the single date datasets, GoogLeNet consistently had superior performance over the other two methods. Further comparisons between RF and GoogLeNet demonstrated that the detection accuracies of the two methods were not significantly different from each other (p > 0.05); hence, the choice of any of the two would not affect the final detection accuracies. However, considering the fact that the average accuracy of GoogLeNet (93%) was larger than RF (91%), it was recommended to use GoogLeNet for wheat lodging detection. This research demonstrated that UAS RGB imagery, coupled with the GoogLeNet machine learning algorithm, can be a novel, reliable, objective, simple, low-cost, and effective (accuracy > 90%) tool for wheat lodging detection.


2019 ◽  
Vol 27 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Qiang Wei ◽  
Zongcheng Ji ◽  
Zhiheng Li ◽  
Jingcheng Du ◽  
Jingqi Wang ◽  
...  

AbstractObjectiveThis article presents our approaches to extraction of medications and associated adverse drug events (ADEs) from clinical documents, which is the second track of the 2018 National NLP Clinical Challenges (n2c2) shared task.Materials and MethodsThe clinical corpus used in this study was from the MIMIC-III database and the organizers annotated 303 documents for training and 202 for testing. Our system consists of 2 components: a named entity recognition (NER) and a relation classification (RC) component. For each component, we implemented deep learning-based approaches (eg, BI-LSTM-CRF) and compared them with traditional machine learning approaches, namely, conditional random fields for NER and support vector machines for RC, respectively. In addition, we developed a deep learning-based joint model that recognizes ADEs and their relations to medications in 1 step using a sequence labeling approach. To further improve the performance, we also investigated different ensemble approaches to generating optimal performance by combining outputs from multiple approaches.ResultsOur best-performing systems achieved F1 scores of 93.45% for NER, 96.30% for RC, and 89.05% for end-to-end evaluation, which ranked #2, #1, and #1 among all participants, respectively. Additional evaluations show that the deep learning-based approaches did outperform traditional machine learning algorithms in both NER and RC. The joint model that simultaneously recognizes ADEs and their relations to medications also achieved the best performance on RC, indicating its promise for relation extraction.ConclusionIn this study, we developed deep learning approaches for extracting medications and their attributes such as ADEs, and demonstrated its superior performance compared with traditional machine learning algorithms, indicating its uses in broader NER and RC tasks in the medical domain.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Sheng Huang ◽  
Xiaofei Fan ◽  
Lei Sun ◽  
Yanlu Shen ◽  
Xuesong Suo

Traditionally, the classification of seed defects mainly relies on the characteristics of color, shape, and texture. This method requires repeated extraction of a large amount of feature information, which is not efficiently used in detection. In recent years, deep learning has performed well in the field of image recognition. We introduced convolutional neural networks (CNNs) and transfer learning into the quality classification of seeds and compared them with traditional machine learning algorithms. Experiments showed that deep learning algorithm was significantly better than the machine learning algorithm with an accuracy of 95% (GoogLeNet) vs. 79.2% (SURF+SVM). We used three classifiers in GoogLeNet to demonstrate that network accuracy increases as the depth of the network increases. We used the visualization technology to obtain the feature map of each layer of the network in CNNs and used the heat map to represent the probability distribution of the inference results. As an end-to-end network, CNNs can be easily applied for automated seed manufacturing.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 88
Author(s):  
Charles Carslake ◽  
Jorge A. Vázquez-Diosdado ◽  
Jasmeet Kaler

Previous research has shown that sensors monitoring lying behaviours and feeding can detect early signs of ill health in calves. There is evidence to suggest that monitoring change in a single behaviour might not be enough for disease prediction. In calves, multiple behaviours such as locomotor play, self-grooming, feeding and activity whilst lying are likely to be informative. However, these behaviours can occur rarely in the real world, which means simply counting behaviours based on the prediction of a classifier can lead to overestimation. Here, we equipped thirteen pre-weaned dairy calves with collar-mounted sensors and monitored their behaviour with video cameras. Behavioural observations were recorded and merged with sensor signals. Features were calculated for 1–10-s windows and an AdaBoost ensemble learning algorithm implemented to classify behaviours. Finally, we developed an adjusted count quantification algorithm to predict the prevalence of locomotor play behaviour on a test dataset with low true prevalence (0.27%). Our algorithm identified locomotor play (99.73% accuracy), self-grooming (98.18% accuracy), ruminating (94.47% accuracy), non-nutritive suckling (94.96% accuracy), nutritive suckling (96.44% accuracy), active lying (90.38% accuracy) and non-active lying (90.38% accuracy). Our results detail recommended sampling frequencies, feature selection and window size. The quantification estimates of locomotor play behaviour were highly correlated with the true prevalence (0.97; p < 0.001) with a total overestimation of 18.97%. This study is the first to implement machine learning approaches for multi-class behaviour identification as well as behaviour quantification in calves. This has potential to contribute towards new insights to evaluate the health and welfare in calves by use of wearable sensors.


Sign in / Sign up

Export Citation Format

Share Document