scholarly journals Earthquake Triggered Multi-Hazard and Risk Study Based on Remote Sensing and Geographic Information System

Author(s):  
Aditya Saputra ◽  
Christopher Gomez ◽  
Ioannis Delikostidis ◽  
Peyman Zawar-Reza ◽  
Danang Sri Hadmoko ◽  
...  

Yogyakarta City is one of the big city which is located in Java Island, Indonesia. Yogyakarta City, including study area (Pleret Sub District), are very prone to earthquake hazards, because close to several active earthquake sources. For example, Sunda Megathrust which often generates a big earthquake which can affect the study area. The Sunda Megathrust extends from north to south and west to east along the Sumatra and Java Islands. Furthermore, an active normal fault called as Opak Fault pass through right in the middle of Study area and divides the study area into east and west zone. Recently, after the devastating earthquake in 2006, the population of the study area increases significantly. As a result, the housing demand is also increasing. However, due to the absence of earthquake building code in the study area, locals tend to build improper new houses. Furthermore, in some part of the mountainous area in the study area, there are some building found in unstable slopes area. Due to this condition, the multi-hazard and risk study needs to be done in Pleret. The increasing of population and improper houses in Pleret Sub-District can lead to amplify the impact. Thus, the main objective of this study is to assess the multi-hazards and risk of earthquake and other related secondary hazards such as ground amplification, liquefaction, and coseismic landslide.  The method mainly utilised the geographic information system, remote sensing and was fit up by the outcrop study. The results show that the middle part of the study area has a complex geological structure. It was indicated by a lot of unchartered faults was found in the outcrops. Furthermore, the relatively prone areas to earthquake can be determined. In term of the coseismic landslide, the prone area to the coseismic landslide is located in the east part of the study area in the middle slope of Baturagung Escarpment. The highly potential area of liquefaction is dominated in the central part of the study area. In term of building collapsed probability, the result shows that the safest house based on statistical analysis is the residential house with the building attribute of wood structure, roof cast material, distance more than 15 km from the earthquake source, and located above the Nglanggran Formation. Finally, the multi-hazard and risk analysis show that the middle part of the study area is more vulnerable than the other part of Pleret Sub-District.

Author(s):  
Shahid Mohommad ◽  
Shambhu Prasad Joshi

Climate change is an inevitable process impacting the forest ecosystem. Various impacts like treeline shift, forest fires, and Species distribution are due to the effect of climate change. Green House Gases concentration in the atmosphere is increasing day by day due to anthropogenic activities. The pace of climate change is very alarming which will have the substantial impact on the forest ecosystem. Role of remote sensing and geographic information system in observing the forest ecosystem was reviewed. Spatio-temporal analysis of change in forest structure can be proficiently done with the help of remote sensing and geographic information system. Climate Change Mitigation programmes like Reducing Emissions from Deforestation and Forest Degradation (REDD-plus) can be implemented with the help of remote sensing and geographic information system. Baseline data generation using remote sensing and geographic information system can be useful in designing the policies for forest management and monitoring.


2021 ◽  
Vol 13 (9) ◽  
pp. 1818
Author(s):  
Lisha Ding ◽  
Lei Ma ◽  
Longguo Li ◽  
Chao Liu ◽  
Naiwen Li ◽  
...  

Flash floods are among the most dangerous natural disasters. As climate change and urbanization advance, an increasing number of people are at risk of flash floods. The application of remote sensing and geographic information system (GIS) technologies in the study of flash floods has increased significantly over the last 20 years. In this paper, more than 200 articles published in the last 20 years are summarized and analyzed. First, a visualization analysis of the literature is performed, including a keyword co-occurrence analysis, time zone chart analysis, keyword burst analysis, and literature co-citation analysis. Then, the application of remote sensing and GIS technologies to flash flood disasters is analyzed in terms of aspects such as flash flood forecasting, flash flood disaster impact assessments, flash flood susceptibility analyses, flash flood risk assessments, and the identification of flash flood disaster risk areas. Finally, the current research status is summarized, and the orientation of future research is also discussed.


2015 ◽  
Vol 4 ◽  
pp. 1421-1428 ◽  
Author(s):  
D. Sindhu ◽  
Sadashivappa ◽  
A.S. Ravikumar ◽  
B.L. Shivakumar

2018 ◽  
Vol 25 (4) ◽  
pp. 133-140 ◽  
Author(s):  
Tesfa Gebre ◽  
Imran Ahmad ◽  
Mithas Ahmad Dar ◽  
Edissa Gadissa ◽  
Afera Halefom Teka ◽  
...  

2019 ◽  
Vol 10 (20) ◽  
pp. 17 ◽  
Author(s):  
Mattia Previtali ◽  
Riccardo Valente

<p>The open data paradigm is changing the research approach in many fields such as remote sensing and the social sciences. This is supported by governmental decisions and policies that are boosting the open data wave, and in this context archaeology is also affected by this new trend. In many countries, archaeological data are still protected or only limited access is allowed. However, the strong political and economic support for the publication of government data as open data will change the accessibility and disciplinary expertise in the archaeological field too. In order to maximize the impact of data, their technical openness is of primary importance. Indeed, since a spreadsheet is more usable than a PDF of a table, the availability of digital archaeological data, which is structured using standardised approaches, is of primary importance for the real usability of published data. In this context, the main aim of this paper is to present a workflow for archaeological data sharing as open data with a large level of technical usability and interoperability. Primary data is mainly acquired through the use of digital techniques (e.g. digital cameras and terrestrial laser scanning). The processing of this raw data is performed with commercial software for scan registration and image processing, allowing for a simple and semi-automated workflow. Outputs obtained from this step are then processed in modelling and drawing environments to generate digital models, both 2D and 3D. These crude geometrical data are then enriched with further information to generate a Geographic Information System (GIS) which is finally published as open data using Open Geospatial Consortium (OGC) standards to maximise interoperability.</p><p><strong>Highlights:</strong></p><ul><li><p>Open data will change the accessibility and disciplinary expertise in the archaeological field.</p></li><li><p>The main aim of this paper is to present a workflow for archaeological data sharing as open data with a large level of interoperability.</p></li><li><p>Digital acquisition techniques are used to document archaeological excavations and a Geographic Information System (GIS) is generated that is published as open data.</p></li></ul>


Sign in / Sign up

Export Citation Format

Share Document