scholarly journals Better Quantum Mechanics ? Thoughts on a New Definition of Momentum That Makes Physics Simpler and More Consistent

Author(s):  
Espen Haug

We suggest that momentum should be redened in order to help make physics more consistent and more logical. In this paper, we propose that there is a rest-mass momentum, a kinetic momentum, and a total momentum. This leads directly to a simpler relativistic energy momentum relation. As we point out, it is the Compton wavelength that is the true wavelength for matter; the de Broglie wavelength is mostly a mathematical artifact. This observation also leads us to a new relativistic wave equation and a new and likely better QM. Better in terms of being much more consistent and simpler to understand from a logical perspective.

Author(s):  
Espen Haug

We suggest that momentum should be redened in order to help make physics more consistent and more logical. In this paper, we propose that there is a rest-mass momentum, a kinetic momentum, and a total momentum. This leads directly to a simpler relativistic energy momentum relation. As we point out, it is the Compton wavelength that is the true wavelength for matter; the de Broglie wavelength is mostly a mathematical artifact. This observation also leads us to a new relativistic wave equation and a new and likely better QM. Better in terms of being much more consistent and simpler to understand from a logical perspective.


The relativistic wave equations currently used in physical theory are symmetrical between positive and negative energies. A new relativistic wave equation for particles of non-zero rest-mass is here proposed, allowing only positive values for the energy. There is great formal similarity between it and the usual relativistic wave equation for the electron, but the physical significance is very different. In particular, the new equation gives integral values for the spin.


2017 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Eyal Brodet

In this paper we reconsider the conventional expressions given by special relativity to the energy and momentum of a particle. In the current framework, the particle's energy and momentum are computed using the particle's rest mass, M and rest mass time, t_m=h/M c^2  where t_m has the same time unit as conventionally used for the light velocity c. Therefore it is currently assumed that this definition of time describes the total kinetic and mass energy of a particle as given by special relativity. In this paper we will reexamine the above assumption and suggest describing the particle's energy as a function of its own particular decay time and not with respect to its rest mass time unit. Moreover we will argue that this rest mass time unit currently used is in fact the minimum time unit defined for a particle and that the particle may have more energy stored with in it. Experimental ways to search for this extra energy stored in particles such as electrons and photons are presented.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 467
Author(s):  
Fayçal Hammad ◽  
Alexandre Landry ◽  
Parvaneh Sadeghi

The relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained. The fully relativistic regime is considered, and the energy levels occupied by the particles are derived as functions of the magnetic field, the radius of the massive sphere and the total mass of the latter. As no assumption is made on the relative strengths of the particles’ interaction with the gravitational and magnetic fields, the relevance of our results to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense, is discussed.


Author(s):  
Espen Haug

We have recently presented a unified quantum gravity theory [1]. Here we extend on that work and present an even simpler version of that theory. For about hundred years, modern physics has not been able to build a bridge between quantum mechanics and gravity. However, a solution may be found here; we present our quantum gravity theory, which is rooted in indivisible particles where matter and gravity are related to collisions and can be described by collision space-time. In this paper, we also show that we can formulate a quantum wave equation rooted in collision space-time, which is equivalent to mass and energy.The beauty of our theory is that most of the main equations that currently exist in physics are not changed (in terms of predictions), except at the Planck scale. The Planck scale is directly linked to gravity and gravity is, surprisingly, actually a Lorentz symmetry as well as a form of Heisenberg uncertainty break down at the Planck scale. Our theory gives a dramatic simplification of many physics formulas without altering the output predictions. The relativistic wave equation, the relativistic energy momentum relation, and Minkowski space can all be represented by simpler equations when we understand mass at a deeper level. This not attained at a cost, but rather a reflection of the benefit in having gravity and electromagnetism unified under the same theory.


Sign in / Sign up

Export Citation Format

Share Document